바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073

동시출현단어분석을 통한 데이터과학 분야의 지적구조에 관한 연구

A Study on the Intellectual Structure of Data Science Using Co-Word Analysis

정보관리학회지, (P)1013-0799; (E)2586-2073
2017, v.34 no.4, pp.101-126
https://doi.org/10.3743/KOSIM.2017.34.4.101
김현정 (서울여자대학교)

  • 다운로드 수
  • 조회수

초록

최근 문헌정보학의 관련 분야로 주목받고 있는 데이터과학은 오랫동안 문헌정보학에서 해오던 정보의 수집, 저장, 조직, 분석, 활용 등의 활동을 데이터에 적용하여 그 가치를 이해하려는 학문이며, 통계학과 컴퓨터공학 등 다른 학문분야와의 연계가 필요한 분야이다. 이러한 데이터과학 분야의 연구 영역을 파악하기 위하여 동시출현단어 분석을 사용하여 Web of Science 핵심컬렉션에 수록된 문헌들 중 데이터과학 관련 자료들을 수집하고, 그 주제범주를 활용하여 네트워크분석을 실시하였다. 총 667건의 자료에 대한 159개의 주제범주를 기술분석하여 데이터과학 관련 연구가 많이 이루어지고 있는 학문분야를 조사하였고, 네트워크분석을 통해 데이터과학 분야 연구영역의 지적구조를 시각적으로 파악하였다. 분석결과, 데이터과학 분야의 연구들은 2개 영역 9개 군집으로 구분되었으며, 주제범주의 용어들 중 중심성이 높은 용어들을 통해 각 군집의 대표적인 주제들을 선정하였다. 연구의 결과는 데이터과학 분야의 연구들에 대한 지적구조를 파악하는데 도움이 될 수 있고, 문헌정보학과의 연계융합전공으로서의 데이터과학 교과과정 개발에 방향성을 제시할 수도 있을 것이다.

Abstract

Data Science is emerging as a closely related field of study to Library and Information Science (LIS), and as an interdisciplinary subject combining LIS, statistics and computer science in an attempt to understand the value of data by applying what LIS has been doing for collecting, storing, organizing, analyzing, and utilizing information. To investigate which subject fields other than LIS, statistics, and computer science are related to Data Science, this study retrieved 667 materials from Web of Science Core Collection, extracted terms representing Web of Science Categories, examined subject fields that are studying Data Science using descriptive analysis, analyzed the intellectual structure of the field by co-word analysis and network analysis, and visualized the results as a Pathfinder network with clustering created with the PNNC clustering algorithm. The result of this study might help to understand the intellectual structure of the Data Science field, and may be helpful to give an idea for developing relatively new curriculum.

참고문헌

1

강범일. (2013). 프로파일링 분석과 동시출현단어 분석을 이용한 한국어교육학의 정체성 분석. 정보관리학회지, 30(4), 195-213. http://dx.doi.org/10.3743/KOSIM.2013.30.4.195.

2

강범일. (2014). 트위터 관련 연구에 대한 계량정보학적 분석. 정보관리학회지, 31(3), 293-311. http://dx.doi.org/10.3743/KOSIM.2014.31.3.293.

3

강지혜. (2016). 문헌정보학과의 데이터 사이언스 커리큘럼 개발 실태와 방향성 고찰. 한국도서관·정보학회지, 47(3), 343-363.

4

김선회. (2015). 한국 환경사회학의 지적 구조 — ECO 논문 제목의 동시출현단어분석을 중심으로. ECO, 19(2), 165-211.

5

김판준. (2015). 국외 독서 및 독서교육 연구동향 분석: 문헌정보학 분야를 중심으로. 정보관리학회지, 32(3), 69-97. http://dx.doi.org/10.3743/KOSIM.2015.32.3.069.

6

김판준. (2015). 디지털 큐레이션 연구동향 분석과 과제: 문헌정보학 분야를 중심으로. 정보관리학회지, 32(1), 265-295. http://dx.doi.org/10.3743/KOSIM.2015.32.1.265.

7

김하진. (2014). 동시출현단어 분석을 통한 국내외 정보학 학회지 연구동향 파악. 정보관리학회지, 31(1), 99-118. http://dx.doi.org/10.3743/KOSIM.2014.31.1.099.

8

서선경. (2013). 동시출현단어 분석 기반 오픈 액세스 분야 지적구조에 관한 연구. 한국비블리아학회지, 24(1), 207-228.

9

이명호. (2016). 데이터 사이언스 교과과정에 대한 연구. 한국비블리아학회지, 27(1), 263-290. http://dx.doi.org/10.14699/kbiblia.2016.27.1.263.

10

이수상. (2014). 언어 네트워크 분석 방법을 활용한 학술논문의 내용분석. 정보관리학회지, 31(4), 49-68. http://dx.doi.org/10.3743/KOSIM.2014.31.4.049.

11

이재윤. (2006). 지적 구조 분석을 위한 새로운 클러스터링 기법에 관한 연구. 정보관리학회지, 23(4), 215-231.

12

이재윤. (2013). tnet과 WNET의 가중 네트워크 중심성 지수 비교 연구. 정보관리학회지, 30(4), 241-264. http://dx.doi.org/10.3743/KOSIM.2013.30.4.241.

13

이재윤. (2015). 데이터 사이언스와 데이터 리터러시 (11-15). 한국정보관리학회 학술대회 논문집.

14

이재윤. (2016). 국내 재난 관련 연구 동향에 대한 계량정보학적 분석. 정보관리학회지, 33(4), 103-124. http://dx.doi.org/10.3743/KOSIM.2016.33.4.103.

15

이정규. (2013). 동시출현단어 분석을 이용한 도서관경영 분야의 지적구조 분석 (23-26). 한국정보관리학회 학술대회 논문집.

16

장령령. (2014). 학술지 중요도와 키워드 순서를 고려한 단어동시출현 분석을 이용한 독서분야의 지적구조 분석. 한국비블리아학회지, 25(1), 295-318. http://dx.doi.org/10.14699/kbiblia.2014.25.1.295.

17

최상희. (2014). 동시출현단어분석을 이용한 연관영화정보 분석 연구. 정보관리학회지, 31(4), 161-178. http://dx.doi.org/10.3743/KOSIM.2014.31.4.161.

18

최예진. (2016). 동시출현단어 분석에 기반한 메타데이터 분야의 지적구조에 관한 연구. 정보관리학회지, 33(3), 63-83. http://dx.doi.org/10.3743/KOSIM.2016.33.3.063.

19

최형욱. (2017). 사회학 분야의 연구데이터 특성과 지적구조 규명에 관한 연구. 정보관리학회지, 34(3), 109-124. http://dx.doi.org/10.3743/KOSIM.2017.34.3.109.

20

허고은. (2013). 저자동시인용 분석과 동시출현단어 분석을 이용한 의료정보학 저널의 지적구조 분석. 정보관리학회지, 30(2), 207-225. http://dx.doi.org/10.3743/KOSIM.2013.30.2.207.

21

H Frank Cervone. (2016). Informatics and data science: an overview for the information professional. Digital Library Perspectives, 32(1), 7-10. http://dx.doi.org/10.1108/DLP-10-2015-0022.

22

Jane Cho. (2014). Intellectual structure of the institutional repository field: A co-word analysis. Journal of Information Science, 40(3), 386-397. http://dx.doi.org/10.1177/0165551514524686.

23

Danowski, J.. (1993). Progress in Communication Sciences IV:Ablex.

24

Chunmei Gan. (2015). Research characteristics and status on social media in China: A bibliometric and co-word analysis. Scientometrics, 105(2), 1167-1182. http://dx.doi.org/10.1007/s11192-015-1723-2.

25

He, Q.. (1999). Knowledge discovery through co-word analysis. Library Trends, 48(1), 133-159.

26

Chang-Ping Hu. (2013). A co-word analysis of library and information science in China. Scientometrics, 97(2), 369-382. http://dx.doi.org/10.1007/s11192-013-1076-7.

27

Kuhn, T.. (1996). The Structure of Scientific Revolutions:The University of Chicago Press.

28

Loet Leydesdorff. (2017). Co-word maps and topic modeling: A comparison using small and medium-sized corpora (N < 1,000). Journal of the Association for Information Science and Technology, 68(4), 1024-1035. http://dx.doi.org/10.1002/asi.23740.

29

Gao-Yong Liu. (2012). A co-word analysis of digital library field in China. Scientometrics, 91(1), 203-217. http://dx.doi.org/10.1007/s11192-011-0586-4.

30

Lu Trong Khiem Nguyen. A data-driven approach to nonlinear elasticity. Computers & Structures, 194, 97-115. http://dx.doi.org/10.1016/j.compstruc.2017.07.031.

31

S. Ravikumar. (2015). Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics (2005–2010). Scientometrics, 102(1), 929-955. http://dx.doi.org/10.1007/s11192-014-1402-8.

32

Rong Tang. (2016). Data science programs in U.S. higher education: An exploratory content analysis of program description, curriculum structure, and course focus. Education for Information, 32(3), 269-290. http://dx.doi.org/10.3233/EFI-160977.

33

Zhong-Yi Wang. (2012). Research on the semantic-based co-word analysis. Scientometrics, 90(3), 855-875. http://dx.doi.org/10.1007/s11192-011-0563-y.

34

Zongshui Wang. (2015). Social networks in marketing research 2001–2014: a co-word analysis. Scientometrics, 105(1), 65-82. http://dx.doi.org/10.1007/s11192-015-1672-9.

35

Web of Science. (2017). Web of Science Core Collection Help. http://images.webofknowledge.com/WOKRS526R11/help/WOS/contents.html.

36

Howard D. White. (2003). Pathfinder networks and author cocitation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science and Technology, 54(5), 423-434. http://dx.doi.org/10.1002/asi.10228.

37

Ying Yang. (2012). Integration of three visualization methods based on co-word analysis. Scientometrics, 90(2), 659-673. http://dx.doi.org/10.1007/s11192-011-0541-4.

38

Qian-Jin Zong. (2013). Doctoral dissertations of Library and Information Science in China: A co-word analysis. Scientometrics, 94(2), 781-799. http://dx.doi.org/10.1007/s11192-012-0799-1.

정보관리학회지