바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073

한국학 연구 논문의 텍스트 구조 기반 메타데이터 검색 시스템 개발 연구

A Study on Developing a Metadata Search System Based on the Text Structure of Korean Studies Research Articles

정보관리학회지, (P)1013-0799; (E)2586-2073
2016, v.33 no.3, pp.155-176
https://doi.org/10.3743/KOSIM.2016.33.3.155
송민선 (성균관대학교 정보관리연구소)
고영만 (성균관대학교)
이승준 (성균관대학교 정보관리연구소)

  • 다운로드 수
  • 조회수

초록

본 연구는 한국학 연구 논문 텍스트의 의미 구조를 기반으로 하는 메타데이터를 적용한 학술정보시스템을 구축하여 기존 유사 시스템과의 비교를 통해, 텍스트 구조 기반 메타데이터의 활용 가능성을 확인해 보고자 하는 것을 목적으로 한다. 이를 위해 한국학술지인용색인(Korea Citation Index, KCI)에서 일정 기준을 충족하는 한국학 분야 연구 논문 데이터를 대상으로 의미 구조 메타데이터 항목을 적용한 시범적 검색 시스템(Korean Studies Metadata Database, KMD)을 구축하였으며, 동일한 검색 키워드를 적용하여 기존의 KCI 시스템과 비교했을 때 어떤 특징과 차이점을 갖는지 비교해 보았다. 연구 결과, KMD 시스템이 KCI에 비해 이용자의 검색 의도에 맞는 결과를 보다 효율적으로 보여주는 것으로 확인되었다. 즉 검색하고자 하는 키워드의 조합이나 조건식이 기존 시스템과 동일하더라도 검색 결과를 통해 최종적으로 연구 진행과 관련해 찾고자 하는 연구 목적, 연구의 대상 데이터나 시공간적 배경 등에 따른 검색 결과를 다양하게 보여줄 수 있는 것으로 나타났다.

Abstract

This study aims to develope a scholarly metadata information system based on conceptual elements of text structure of Korean studies research articles and to identify the applicability of text structure based metadata as compared with the existing similar system. For the study, we constructed a database(Korean Studies Metadata Database, KMD) with text structure based on metadata of Korean Studies journal articles selected from the Korea Citation Index(KCI). Then we verified differences between KCI system and KMD system through search results using same keywords. As a result, KMD system shows the search results which meet the users’ intention of searching more efficiently in comparison with the KCI system. In other words, even if keyword combinations and conditional expressions of searching execution are same, KMD system can directly present the content of research purposes, research data, and spatial-temporal contexts of research et cetera as search results through the search procedure.

참고문헌

1

고영만. (2011). 연구문헌의 지식구조를 반영하는 의미기반의 지식조직체계에 관한 연구. 정보관리학회지, 28(1), 145-170.

2

박진용. (1997). 텍스트 의미구조의 과정 중심 분석 방법 연구.

3

송민선. (2015). 한국학 연구 논문의 의미 구조 기반 메타데이터 연구. 한국도서관·정보학회지, 46(3), 277-299.

4

유사라. (2009). 연구자 중심 연구성과물 의미검색을 위한 인문사회 학술용어 온톨로지 적용 및 유지관리 체계 연구. 한국문헌정보학회지, 43(2), 277-298.

5

정여훈. (2013). 수사구조이론과 한국어 텍스트 분석의 실제. 언어사실과 관점, 32, 261-288.

6

Beissel-Durrant, G.. (2004). A typology of research methods within the social sciences. National Centre for Research Methods.

7

Bouayad-Agha, N.. (2000). Can text structure be incompatible with rhetorical structure? (12-16). Proceedings of the First International Conference on Natural Language Generation.

8

Brewer, W. F.. (1980). Theoretical issues in reading comprehension:Perspectives from cognitive psychology, linguistics, artificial intelligence, and education:Lawrence Erlbaum Associates.

9

Brinker, K.. (1985). Linguistische textanalyse:Erich Schmitdt Verlag.

10

Buckingham Shum, S.. (2000). Scholonto: Ontology-based digital library server for research document and discourse. International Journal on Digital Libraries, 3, 237-248. http://dx.doi.org/10.1007/s007990000034.

11

de Beaugrande, R.. (1981). Einführung in die textlinguistik:Niemeyer.

12

Frederiksen, C. H.. (1975). Representing logical and semantic structure of knowledge acquired from discourse. Cognitive Psychology, 7(3), 371-458. http://dx.doi.org/10.1016/0010-0285(75)90016-x.

13

Halladay, M. A. K.. (1976). Cohension in English:Longman.

14

Harmsze, F. A. P.. (2000). A modular structure for scientific articles in an electronic environment.

15

Heflin, J.. (1998). Reading between the lines: Using SHOE to discover implicit knowledge from the web (-). AAAI-98 Workshop on AI and Information Integration.

16

Kampa, S. R.. (2002). Who are the expert? e-scholars in the semantic web.

17

Kando, N.. (1997). Text-level structure of research papers: Implications for text-based information processing systems (68-81). Proceedings of the 19th Annual BCS-IRSG Colloquium on IR Research.

18

Kando, N.. (1999). Text structure analysis as a tool to make retrieved documents sable (126-135). Proceedings of the 4th International Workshop on Information Retrieval with Asian Languages.

19

Kintsch, W.. (1974). The representation of meaning in memory:Lawrence Erlbaum.

20

Luke, S.. (1996). Ontology-based knowledge discovery on the worldwide web (96-102). Working Notes of the Workshop on Internet-Based Information Systems at the 13th National Conference on Artificial Intelligence (AAAI96).

21

Meyer, B. J. F.. (1975). The organization of prose and its effects on memory:North-Holland Publishing Co.

22

Ono, K.. (1994). Abstract generation based on rhetorical structure extraction (344-348). Proceedings of the 15th conference on Computational linguistics.

23

Shotton, D.. (2009). Cito, the citation typing ontology. Journal of Biomedical Semantics, 1(Suppl 1), S6-. http://dx.doi.org/10.1186/2041-1480-1-s1-s6.

24

Sibun, P.. (1993). Domain structure, rhetorical structure, and text structure (-). Proceedings of the Workshop on Intentionality and Structure in Discourse Relations on the 31st ACL. Ohio State University Columbus.

25

Superceanu R.. (1998). The rhetoric of scientific articles: A genre study:Orizonturi Universitare.

26

van Dijk, T. A.. (1980). Macrostructures: An interdisciplinary study of global structures in discourse, interaction, and cognition:Lawrence Erlbaum.

27

Vater, H.. (1994). Einführung in die textlinguistik:Wilhelm Fink Verlag.

28

Weigand, E.. (2009). Language as dialogue: From rules to principles of probability:John Benjamins Publishing Company.

29

Werlich, E.. (1976). A text grammar of English:Quelle und Meyer.

정보관리학회지