바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073

동시출현단어분석을 이용한 연관영화정보 분석 연구

An Analysis of Related Movie Information Using The Co-Word Method

정보관리학회지, (P)1013-0799; (E)2586-2073
2014, v.31 no.4, pp.161-178
https://doi.org/10.3743/KOSIM.2014.31.4.161
최상희 (대구가톨릭대학교)

  • 다운로드 수
  • 조회수

초록

최근 이용자들이 정보를 공동생산하고 소비하는 웹기반 서비스들이 활발해지면서 이용자가 정보를 이용한 기록이나 이용자가 습득한 정보를 활용하여 생산한 다양한 부가 정보들이 다시 이용자에게 제공되고 있다. 또한 쌍방향으로 이용자들이 소통할 수 있는 정보채널이 다양해짐으로써 공통된 관심사를 가진 이용자의 정보소비 경험을 공유할 수 있는 방법이 활발하게 모색되고 있다. 이 연구에서는 동시출현정보 분석기법과 자아중심 네트워크 분석 기법을 적용하여 IMDB 서비스의 기존 이용자들이 자신이 보고 싶거나 좋아하는 영화를 선별하여 만들어 놓은 영화리스트에 나타난 정보를 토대로 특정 영화를 좋아하는 이용자가 선호할 만한 다른 영화를 찾아낼 수 있도록 연관영화정보를 다각적으로 표현하였다. 한 영화를 기준으로 연관 영화, 감독, 장르로 분석을 한 결과 영화의 테마나 주인공성향과 같은 다양한 자질로도 연관영화가 연결되었고 감독의 경우 영화내용보다는 감독의 인지도에 영향을 받는 것으로 나타났다. 또한 영화는 주제의 복합성이 큰 것으로 나타나 장르가 연관영화정보를 제공하기에 적합하지 않은 것으로 분석되었다.

Abstract

Recently, many information services allow users to collaborate to produce and use information. Sharing information is also important for users who have similar taste or interest. As various channels are available for users to share their experiences and knowledge, users’ data have also been accumulated within the information services. This study collected movie lists made by users of IMDB service. Co-word analysis and ego-centered network analysis were adapted to discover relevant information for users who chose a specific movie. Three factors of movies including movie title, director and genre were used to present related movie information. Movie title is an effective feature to present related movies with various aspects such as theme or characters and the popularity of directors affects on identifying related directors. Genre is not useful to find related movies due to the complexity in the topic of a movie.

참고문헌

1

강범일. (2013). 프로파일링 분석과 동시출현단어 분석을 이용한 한국어교육학의 정체성 분석. 정보관리학회지, 30(4), 195-213. http://dx.doi.org/10.3743/KOSIM.2013.30.4.195.

2

김상화. (2012). 협력적 필터링과 콘텐츠 정보를 결합한 영화 추천 알고리즘. 정보과학회논문지 : 소프트웨어 및 응용, 39(4), 261-268.

3

김판준. (2007). 연구 영역 분석을 위한 디스크립터 프로파일링에 관한 연구. 정보관리학회지, 24(4), 285-303.

4

김하진. (2014). 동시출현단어 분석을 통한 국내외 정보학 학회지 연구동향 파악. 정보관리학회지, 31(1), 99-118. http://dx.doi.org/10.3743/KOSIM.2014.31.1.099.

5

서선경. (2013). 동시출현단어 분석 기반 오픈 액세스 분야 지적구조에 관한 연구. 한국비블리아학회지, 24(1), 207-228.

6

이재윤. (2006). 지적 구조 분석을 위한 새로운 클러스터링 기법에 관한 연구. 정보관리학회지, 23(4), 215-231.

7

이재윤. (2007). 국내 광역 과학 지도 생성 연구. 정보관리학회지, 24(3), 363-383.

8

이재윤. (2012). 자기 인용 네트워크와 인용 정체성을 이용한 연구자의 연구 이력 분석에 관한 연구. 정보관리학회지, 29(1), 157-174. http://dx.doi.org/10.3743/KOSIM.2012.29.1.157.

9

이재윤. (2013). tnet과 WNET의 가중 네트워크 중심성 지수 비교 연구. 정보관리학회지, 30(4), 241-264. http://dx.doi.org/10.3743/KOSIM.2013.30.4.241.

10

장령령. (2014). 학술지 중요도와 키워드 순서를 고려한 단어동시출현 분석을 이용한 독서분야의 지적구조 분석. 한국비블리아학회지, 25(1), 295-318. http://dx.doi.org/10.14699/kbiblia.2014.25.1.295.

11

최상희. (2014). 이용자 추천정보를 기반으로 한 가수 이미지 분석 (7-10). 제21회 한국정보관리학회 학술대회논문집.

12

Åström, F.. (2007). Changes in the LIS research front: Time-sliced cocitation analyses of LIS journal articles, 1990-2004. Journal of the American Society for Information Science and Technology, 58(7), 947-957.

13

Bar-Ilan, J.. (2008). Which h-index?-A comparison of WoS, Scopus and Google Scholar. Scientometrics, 74(2), 257-271.

14

Buter, R. K.. (2002). Using bibliometric maps to visualise term distribution in scientific papers (697-). In Proceedings of Sixth International Conference on Information Visualisation.

15

Callon, M.. (1983). From translations to problematic networks : An introduction to co-word analysis. Social Science Information, 22, 191-235.

16

Callon, M.. (1986). Mapping the Dynamics of Science and Technology:Sociology of Science in the Real World:Macmillan Press.

17

Carrer-Neto, W.. (2012). knowledge-based recommender system. Application to the movies domain, Expert Systems with Applications, 39(12), 10990-11000.

18

Chen, C.. (1999). Visualising semantic spaces and author co-citation networks in digital libraries. Information Processing & Management, 35(3), 401-420. http://dx.doi.org/10.1016/S0306-4573(98)00068-5.

19

Janssens, F.. (2006). Towards mapping library and information science. Information Processing & Management, 42(6), 1614-1642.

20

Kant, V.. (2013). Integrating collaborative and reclusive methods for effective recommendations : A fuzzy Bayesian approach. International Journal of Interlligent Systems, 28(11), 1099-1123.

21

McCain, K. W.. (1995). R&D themes in information science: A preliminary co-descriptor analysis (275-282). Proceedings of the 5th Biennial Conference of the International Society for Scientometrics and Informetrics. Pine Forest, Il.

22

Nebelong-Bonnevie, E.. (2006). Journal citation identity and journal citation image : A portrait of the Journal of Documentation. Journal of Documentation, 62(1), 30-57.

23

Ni, J.. (2014). Ceiling effect of online user interests for the movies. Physica A, 402, 134-140.

24

Pera, M. S.. (2013). A group recommender for movies based on content similarity and popularity. Information Processing and Management, 49(3), 673-687.

25

Porter, A. L.. (2005). QTIP : Quick technology intelligence processes. Technological Forecasting &Social Change, 72, 1070-1081.

26

서은경. (2013). Detecting Research Trends in Korean Information Science Research, 2000-2011. 정보관리학회지, 30(4), 215-239. http://dx.doi.org/10.3743/KOSIM.2013.30.4.215.

27

Todorov, R.. (1992). Displaying content of scientific journals : A co-heading analysis. Scientometrics, 23(2), 319-334.

28

Tsay, M. Y.. (2011). A bibliometric analysis and comparison on three information science journals : JASIST, IPM & JOD, 1988-2008. Scientometrics, 89(2), 591-606.

29

Tseng, Y.. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.

30

White, H. D.. (2000). The web of knowledge: A festschrift in honor of Eugene Garfield:Information Today, Inc.

31

White, H. D.. (1998). Visualizing a discipline : An author co-citation analysis of information science, 1972-1995. Journal of the American Society for Information Science, 49(4), 327-355.

32

Zhang, L.. (2014). Novel recommendation of user-based collaborative filtering. Journal of Digital Information Management, 12(3), 165-175.

정보관리학회지