바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073

연구지원 정보서비스를 위한 히스토리오그래프와 SPLC 활용에 관한 실험적 연구: LED 분야 사례를 중심으로

Exploratory Study of Applying Historiography and SPLC for Developing Information Services: A Case Study of LED Domain

정보관리학회지, (P)1013-0799; (E)2586-2073
2013, v.30 no.3, pp.273-296
https://doi.org/10.3743/KOSIM.2013.30.3.273
유소영 (한남대학교)

  • 다운로드 수
  • 조회수

초록

이 연구에서는 특정 주제 분야의 핵심적이고 전역적인 연구 동향을 제공하는 연구지원 정보서비스 개발을 위해 SPLC(Search Path Link Count) 분석을 적용할 때, 데이터의 범위와 인용빈도 설정에 대하여 탐험적으로 살펴보고자 하였다. 이를 위하여 Web of Science에서 검색된 RGB LED 분야의 2,318개 논문과 20,109개 상위 인용논문으로 5개의 데이터셋을 구성하였다. 각 데이터셋에서 히스토리오그래프와 SPLC 네트워크를 인용빈도 임계치를 변화시키면서 28개 주요 연구 동향 네트워크를 추출하여, 인용문헌의 포함여부와 인용빈도 임계치 설정이 SPLC 네트워크에 미치는 영향을 살펴보았다. 그리고 특정 기관 소속 연구자들에게 SPLC 네트워크에 포함된 198개 주요 논문 리스트를 제공하고 피드백을 받음으로써, 전역적 연구 동향이 개인 연구자의 정보 요구에 부합하는지 살펴보았다. 분석 결과, 분석 대상에 상위 인용문헌 포함 여부와 인용빈도임계치에 따라 추출되는 SPLC 네트워크가 변화되었으나, 일정 인용빈도임계치값에서는 수렴하였다. 그리고 개인 연구자의 정보 요구는 SPLC를 통해 제공된 전역적 연구 동향과 출판년도의 차이는 있지만 대체적으로 일치하는 것으로 나타나, 인용문헌을 포함하여 인용빈도임계치를 변화시키는 SPLC 분석을 통해 개인 이용자가 원하는 전역적 연구 정보를 제공해 줄 수 있는 것으로 해석된다. 이를 일반화하기 위해서는 이 탐색적 연구에서 제안된 방법을 다양한 분야에 적용하는 후속 연구가 필요할 것이다.

Abstract

The purpose of this study is to examine the data coverage and citation threshold for analyzing SPLC(Search Path Link Count) as a main path of a historiograph of a certain topic in order to provide ‘core’ papers of global research trends to a researcher affiliated with a local R&D institution. 5 datasets were constructed by retrieving and collecting 2,318 articles on RGB LED on Web of Science published from 1990-2013 and 20,109 articles which cited these original 2,318. The SPLC analysis was performed on each dataset by increasing the threshold of citation counts, and the changes and resilience of the 28 extraced networks were compared. The results of user feedback on 198 unique core papers from 28 SPLC networks received from LED researchers affiliated with a Korean government-sponsored research institution were also analyzed. As a result, it is found that the nodes in each SPLC network in each dataset were differentiated by the citation counts, while the changes in the structure of SPLC networks were slight after the networks’ citation counts were set at 40. Additionally, the user feedback showed that personalized research interest generally matched to the global research trends identified by the SPLC analysis.

참고문헌

1

권나현. (2012). 과학기술분야 R&D 전주기 연구 - 국내 생명 및 나노과학기술 연구자를 중심으로 -. 한국문헌정보학회지, 46(3), 103-131. http://dx.doi.org/10.4275/KSLIS.2012.46.3.103.

2

유소영. (2008). 학제적 분야의 정보서비스를 위한 학술지 인용 분석에 관한 연구: Y대학교 생명공학과를 중심으로. 정보관리학회지, 25(4), 283-308.

3

이정연. (2012). 과학기술분야 연구활동 단계별 문제상황 극복을 위한 정보행동 연구. 정보관리학회지, 29(3), 99-122. http://dx.doi.org/10.3743/KOSIM.2012.29.3.099.

4

이재윤. (2013). 계량정보분석과 정보관리실무 (-). 2013 정보관리와 네트워크 분석 워크숍 발표자료.

5

이재윤. (2011). 연구지원 서비스를 위한 계량서지적 분석: 국제백신연구소 연구동향을 대상으로 (11-16). 제18회 한국정보관리학회 학술대회 논문집.

6

이재윤. (2011). 계량서지적 기법을 활용한 LED 핵심 주제영역의 연구 동향 분석. Journal of Information Science Theory and Practice, 42(3), 1-26.

7

Allard, S.. (2009). Design engineers and technical professionals at work : Observing information usage in the workplace. Journal of the American Society for Information Science and Technology, 60(3), 443-454.

8

Barabasi, A.. (2003). Linked: How everything is connected to everything else and what it means for business, science, and everyday life:Plume.

9

Batagelj, V.. (2003). Efficient algorithms for citation network analysis. http://arxiv.org/pdf/cs/0309023.

10

Bichteler, J.. (1989). Information-seeking behavior of geoscientists. Special Libraries, 79(3), 169-178.

11

Case, D. O.. (2012). Looking for Information : A survey of research on information seeking, needs, and behavior(3rd ed.):Emerald.

12

Case, D. O.. (1986). End-user information-seeking in the energy field : Implications for end-user access to DOE RECON databases. Information Processing & Management, 22, 299-308.

13

Choi, C.. (2009). Monitoring the organic structure of technology based on the patent development paths. Technological Forecasting & Social Change, 76(6), 754-768.

14

Colicchia, C.. (2012). Supply chain risk management : A new methodology for a systematic literature review. Supply Chain Management: An International Journal, 17(4), 403-418.

15

de Nooy, W.. (2011). Exploratory social network analysis with Pajek(Revised and expanded second edition):Cambridge University Press.

16

Doreian, P.. (2000). Symmetric-acyclic decompositions of networks. Journal of Classification, 17(1), 3-28.

17

Garfield, E.. (2001). From computational linguistics to algorithmic historiography (-). From computational linguistics to algorithmic historiography. Lazerow Lecture held in conjunction with panel on “Knowledge and Language: Building large-scale knowledge bases for intelligent applications,” presented at the University of Pittsburgh.

18

Garfield, E.. (2001). From bibliographic coupling to co-citation analysis via algorithmic historio-bibliography: A citationist’s tribute to Belver C. Griffith (-). Lazerow Lecture presented at Drexel University.

19

Garfield, E.. (2002). Algorithmic citation-linked historiography-Mapping the literature of science (14-24). Proceedings of the American Society for Information Science and Technology Annual Meeting.

20

Garfield, E.. (2003). Why do we need algorithmic historiography?. Journal of the American Society for Information Science and Technology, 54(5), 400-412.

21

Holland, M. P.. (1995). A longitudinal survey of the information seeking and use habits of some engineers. College and Research Libraries, 55(1), 7-15.

22

Hummon, N. P.. (1989). Connectivity in a citation network : The development of DNA theory. Social Networks, 11, 39-63.

23

Kajikawa, Y.. (2008). Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technological Forecasting & Social Change, 75(6), 771-782.

24

King, D. W.. (2001). Using and reading scholarly literature. Annual Review of Information Science and Technology, 34, 423-477.

25

Kuruppu, P. U.. (2006). Understanding the information needs of academic scholars in agricultural and biological sciences. Journal of Academic Librarianship, 32(6), 609-623.

26

Leydesdorff, L.. (2010). Eugene Garfield and algorithmic historiography : Co-words, co-authors, and journal names. Annals of Library and Information Studies, 57(3), 248-260.

27

Lucio-Arias, D.. (2008). Main-path analysis and path-dependent transitions in HistCite™-based historiograms. Journal of the American Society for Information Science and Technology, 59(12), 1948-1962.

28

Merton, R. K.. (1968). The Matthew effect in science. Science, 159(3810), 56-63.

29

Murphy, J.. (2003). Information-seeking habits of environmental scientists: A study of interdisciplinary scientists at the Environmental Protection Agency in Research Triangle Park, North Carolina. Issues in Science and Technology Librarianship, 38, -.

30

Price, D. J. de S.. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292-306.

31

Tenopir, C.. (2009). Variations in article seeking and reading patterns of academics: What makes a difference?. Library and Information Science Research, 31(3), 139-148.

32

Verspagen, B.. (2007). Mapping technological trajectories as patent citation networks : A study on the history of fuel cell research. Advances in Complex Systems, 10(1), 93-115.

정보관리학회지