바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073

대학도서관 서비스를 위한 서지분석기반 학과의 주제적 특성 분석 연구

Bibliometric Analysis to Analyze Topic Areas of Faculty for Academic Library Service

정보관리학회지, (P)1013-0799; (E)2586-2073
2013, v.30 no.1, pp.237-258
https://doi.org/10.3743/KOSIM.2013.30.1.237
최상희 (대구가톨릭대학교)

  • 다운로드 수
  • 조회수

초록

대학소속 연구자들의 연구 분야가 다변화되면서 대학도서관에서는 서비스 운영을 위하여 학과별 주제 분야를 파악하는 것이 중요한 과제로 인식되고 있다. 이 연구는 대학 학과 소속구성원들의 학술지 논문 서지사항을 분석하여 학과별 주제특성을 다차원적으로 분석하고자 하였다. 게재한 학술논문을 분석하여 1차적으로 해당 학과의 주제영역을 파악하고자 하였으며 심층적으로 주제영역을 분석하기 위하여 해당 논문들이 인용한 학술지를 조사하여 확장된 주제영역을 조사하였다. 또한 상위 인용된 학술지를 대상으로 네트워크 분석을 하여 학술지간 관계를 분석하였다. 분석 결과 학과별 주제 분야별 학술지 이용현황에 차이가 있는 것으로 조사되었으며 특정 주제 분야의 경우 학술지 종수와 논문 수에 따라 주제 분야의 중요도가 비례하지 않는 것으로 나타났다. 즉, 특정분야의 경우 소수의 학술지에서 많은 논문이 인용되고 있는 현상이 있으며 게재하는 주제 분야와 인용하는 주제 분야의 중요도가 일치하지 않는 것으로 나타났다.

Abstract

As topics of researchers become diverse horizontally or vertically, academic libraries have difficulties to identify the dynamic change of researchers' needs for academic publications. This research aims to illustrate the topic areas of researchers in a department of university by analyzing bibliographies of their publications. First, researchers' publications were used to discover the topic areas where the researchers had published. Second, the cited publications in those papers were analysed to identify the expanded topic areas of these researchers. Finally, highly cited journals were analyzed by network analysis method. The major finding is that the importance of topic areas by the number of journals was not necessarily proportional to that by the number of papers. Researchers have a tendency to use many papers in a small number of journals in a certain topic area. Furthermore, the importance of topic areas discovered by researchers' publications was not the same as that discovered by researchers' citations.

참고문헌

1

김영수. (2011). 국내 기업가정신의 연구동향에 관한 탐색적 연구: 동시단어분석 방법을 중심으로. 정보관리학회지, 28(3), 295-312.

2

유소영. (2008). 학제적 분야의 정보서비스를 위한 학술지 인용 분석에 관한 연구: Y대학교 생명공학과를 중심으로. 정보관리학회지, 25(4), 283-308.

3

유종덕. (2011). 저자프로파일링분석과 저자동시인용분석의 유용성 비교 검증. 정보관리학회지, 28(1), 123-144.

4

이재윤. (2006). 국내 최신 동향 파악을 위한 새로운 지적 구조 분석법 (145-152). 제13회 한국정보관리학회 학술대회 논문집.

5

이재윤. (2006). 지적 구조 분석을 위한 새로운 클러스터링 기법에 관한 연구. 정보관리학회지, 23(4), 215-231.

6

이재윤. (2008). 서지적 저자결합분석 - 연구동향 분석을 위한 새로운 접근 -. 정보관리학회지, 25(1), 173-190.

7

이재윤. (2008). 연구자의 투고 학술지 현황에 근거한 국내 학문분야 네트워크 분석. 정보관리학회지, 25(4), 327-345.

8

이재윤. (2012). 자기 인용 네트워크와 인용 정체성을 이용한 연구자의 연구 이력 분석에 관한 연구. 정보관리학회지, 29(1), 157-174. http://dx.doi.org/10.3743/KOSIM.2012.29.1.157.

9

조재인. (2011). 네트워크 텍스트 분석을 통한 문헌정보학 최근 연구 경향 분석. 정보관리학회지, 28(4), 65-83.

10

Ananiadou, S.. (2006). Text mining for biology and biomedicine:Artech House Publishers.

11

Åström, F.. (2007). Changes in the LIS research front : Time-sliced cocitation analyses of LIS journal articles, 1990-2004. Journal of the American Society for Information Science and Technology, 58(7), 947-957.

12

Chen, H.. (2005). Medical informatics : Knowledge management and data mining in biomedicine:Springer-Verlag.

13

Edwards, S.. (1999). Citation analysis as a collection development tool: A bibliometric study of polymer science theses and dissertations. Serials Review, 25(1), 11-20.

14

Enger, K. B.. (2009). Using citation analysis to develop core book collections in academic libraries. Library and Information Science Research, 31(2), 107-112.

15

Fattori, M.. (2003). Text mining applied to patent mapping : A practical business cases. World Patent Information, 25(4), 335-342.

16

Glänzel, W.. (1996). A new methodological approach to bibliographic coupling and its application to the national, regional and institutional level. Scientometrics, 37(2), 195-221.

17

Huang, M.. (2003). Constructing a patent citation map using bibliographic coupling : A study of Taiwan's high-tech companies. Scientometrics, 58(3), 489-506.

18

Jacobs, N.. (2002). Co-term network analysis as a means of describing the information landscapes of knowledge communities across sectors. Journal of Documentation, 58(5), 548-562.

19

Janerving, B.. (2005). A comparison of two bibliometric methods for the mapping of the research front. Scientometrics, 65(2), 245-263.

20

Kessler, M.. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10-25.

21

김희정. (2009). An Analysis of Research Topic Areas of Medical School Researchers. 정보관리학회지, 26(2), 105-126.

22

Kim, H.. (2009). Archiving research trends in LIS domain using profiling analysis. Scientometrics, 80(1), 75-90.

23

Kostoff, R. N.. (1998). Database tomography for technical intelligence : A roadmap of the near-earth space science and technology literature. Information Processing & Management, 34(1), 69-85.

24

Kostoff, R. N.. (2005). Factor matrix text filtering and clustering. Journal of the American Society for Information Science and Technology, 56(9), 946-968.

25

Kostoff, R. N.. (2001). Citation mining : Integrating text mining and bibliometrics for research user profiling. Journal of the American Society for Information Science and Technology, 52(13), 1148-1156.

26

Kumar, H. A.. (2011). Citation analysis of doctoral dissertations at IIMA : A review of the local use of journals. Library Collections, Acquisitions, and Technical Services, 35(1), 32-39.

27

McCain, K. W.. (1991). Mapping economics through the journal literature : An experiment in journal cocitation analysis. Journal of the American Society for Information Science, 42(4), 290-296.

28

McCain, K. W.. (1995). R&D themes in information science: A preliminary co-descriptor analysis (275-282). Proceedings of the 5th Biennial Conference of the International Society for Scientometrics and Informetrics.

29

McCain, K. W.. (2005). The use of bibliometric and knowledge elicitation techniques to map a knowledge domain : Software engineering in the 1990s. Scientometrics, 65(1), 131-144.

30

Miller, T. W.. (2004). Data and text mining : A business applications approach:Prentice Hall.

31

Pancheshnikov, Y.. (2007). A comparison of literature citations in faculty publications and student theses as indicators of collection use and a background for collection management at a university library. The Journal of Academic Librarianship, 33(6), 674-683.

32

Persson, O.. (1994). The intellectual base and research fronts of JASIS 1986-1990. Journal of the American Society for Information Science and Technology, 45(1), 31-38.

33

Reid, E.. (2007). Mapping the contemporary terrorism research domain. International Journal of Human-Computer Studies, 65(1), 42-56.

34

Rip, A.. (1984). Co-word maps of biotechnology : An example of cognitive scientometrics. Scientometrics, 15(6), 381-400.

35

Seglen, P. O.. (2000). Scientific productivity and group size : A bibliometric analysis of Norwegian microbiological research. Scientometrics, 49(1), 125-143.

36

Small, H.. (1973). Co-citation in the scientific literature : A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265-269.

37

Sullivan, D.. (2001). Document warehousing and text mining : Techniques for improving business operations, marketing, and sales:John Wiley & Sons.

38

Swygart-Hobaugh, A. J.. (2004). A citation analysis of the quantitative/qualitative methods debate's reflection in sociology research: Implications for library collection development. Library Collections, Acquisitions, and Technical Services, 28(2), 180-195.

39

Todorov, R.. (1992). Displaying content of scientific journals : A co-heading analysis. Scientometrics, 23(2), 319-334.

40

Tseng, Y.. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.

41

White, H. D.. (1998). Visualizing a discipline : An author co-citation analysis of information science, 1972-1995. Journal of the American Society for Information Science, 49(4), 327-355.

42

Yoon, B.. (2004). A text-mining-based patent network : Analytical tools for high-technology trend. Journal of High Technology Management Research, 15, 37-50.

정보관리학회지