바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073

문서범주화 성능 향상을 위한 의미기반 자질확장에 관한 연구

A Semantic-Based Feature Expansion Approach for Improving the Effectiveness of Text Categorization by Using WordNet

정보관리학회지, (P)1013-0799; (E)2586-2073
2009, v.26 no.3, pp.261-278
https://doi.org/10.3743/KOSIM.2009.26.3.261
정은경 (이화여자대학교)

  • 다운로드 수
  • 조회수

초록

기계학습 기반 문서범주화 기법에 있어서 최적의 자질을 구성하는 것이 성능향상에 있어서 중요하다. 본 연구는 학술지 수록 논문의 필수적 구성요소인 저자 제공 키워드와 논문제목을 대상으로 자질확장에 관한 실험을 수행하였다. 자질확장은 기본적으로 선정된 자질에 기반하여 WordNet과 같은 의미기반 사전 도구를 활용하는 것이 일반적이다. 본 연구는 키워드와 논문제목을 대상으로 WordNet 동의어 관계 용어를 활용하여 자질확장을 수행하였으며, 실험 결과 문서범주화 성능이 자질확장을 적용하지 않은 결과와 비교하여 월등히 향상됨을 보여주었다. 이러한 성능향상에 긍정적인 영향을 미치는 요소로 파악된 것은 정제된 자질 기반 및 분류어 기준의 동의어 자질확장이다. 이때 용어의 중의성 해소 적용과 비적용 모두 성능향상에 영향을 미친 것으로 파악되었다. 본 연구의 결과로 키워드와 논문제목을 활용한 분류어 기준 동의어 자질 확장은 문서 범주화 성능향상에 긍정적인 요소라는 것을 제시하였다.

Abstract

Identifying optimal feature sets in Text Categorization(TC) is crucial in terms of improving the effectiveness. In this study, experiments on feature expansion were conducted using author provided keyword sets and article titles from typical scientific journal articles. The tool used for expanding feature sets is WordNet, a lexical database for English words. Given a data set and a lexical tool, this study presented that feature expansion with synonymous relationship was significantly effective on improving the results of TC. The experiment results pointed out that when expanding feature sets with synonyms using on classifier names, the effectiveness of TC was considerably improved regardless of word sense disambiguation.

참고문헌

1

이재윤. (2005). 자질 선정 기준과 가중치 할당 방식간의 관계를 고려한 문서 자동분류의 개선에 대한 연구. 한국문헌정보학회지, 39(2), 123-146.

2

Barak, L. (2009). Text categorization from category name via lexical reference (33-36). Proceedings of NAACL HLT 2009: Short Papers.

3

Bloehdorn, S. (2004). Boosting for text classification with semantic features (-). Proceedings of the MSW 2004 Workshop at the 10th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

4

Brank, J. (2002). Interaction of feature selection methods and linear classification models (-). Proceedings of the ICML Workshop on Text Learning.

5

de Buenaga Rodriguez, M. (1997). Using WordNet to complement training information in text categorization (150-157). In the Proceedings of the 2nd International Conference on Recent Advances in Natural Language Processing.

6

Chen, J. (2009). Feature selection for text classification with Naive Bayes. Expert Systems with Applications, 36, 5432-5435.

7

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database:MIT Press.

8

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning, 3, 1289-1305.

9

John, G. H. (1994). Irrelevant features and the subset selection problem (121-129). Proceedings of the 11th International Conference on Machine Learning.

10

Kehagias, A. A comparison of word-and sense-based text categorization using several classification algorithms.

11

Lewis, D. D. (1995). Evaluating and optimizing autonomous text categorization systems.

12

Miller, G. (1995). WordNet: A lexical database for English. Communications of the ACM, 38(11), 39-41.

13

Mansuy, T. Evaluating WordNet features in Text Classification models.

14

Rosso, P. (2004). Text categorization and information retrieval using WordNet senses (299-304). Proceedings of GWC2004.

15

Scott, S. (1998). Text classifi- cation using WordNet Hypernyms (45-52). In the Proceedings of the Workshop on Usage of WordNet in Natural Language Processing Systems.

16

Sebastiani, F. (2002). Hypertext categorization in Text Mining and Its Applications(109-129):WIT Press.

17

Sebastiani, F. (2005). Text categorization in Text mining and its applications(109-129):WIT Press.

18

van Rijsbergen, C. J. (1979). Information Retrieval:Butterworths.

19

Verikas, A. (2002). Feature selection with neural networks. Pattern Recognition Letters, 23, 1323-1335.

20

Witten, I. H. (2000). Data Mining: Practical Machine Learning Tools and Techniques with JAVA Implementations:Academic Press.

21

Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Information Retrieval, 1, 69-90.

정보관리학회지