바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073

이용자 이용행위 및 콘텐츠 위치정보에 기반한 개인화 추천방법에 관한 연구

A Study on Personalized Recommendation Method Based on Contents Using Activity and Location Information

정보관리학회지, (P)1013-0799; (E)2586-2073
2009, v.26 no.1, pp.81-105
https://doi.org/10.3743/KOSIM.2009.26.1.081
김용 (전북대학교)
김문석 (전라북도 교육청)
김윤범 (전북대학교 문헌정보학과)
박재홍 ((주) 유라클)

  • 다운로드 수
  • 조회수

초록

본 연구에서는 웹, IPTV 등의 콘텐츠 유통망에서의 개인화 추천서비스를 위하여 이용자의 콘텐츠 이용행위와 콘텐츠의 위치정보를 활용한 추천방법을 제안하고 있다. 추천방법의 성능향상을 위하여 이용자 및 콘텐츠 프로파일 생성방법과 함께, 이용자의 콘텐츠 이용행위를 암묵적 이용자 피드백으로서 학습과정에 적용하여 이용자 선호도를 분석하였다. 학습과정에서의 이용자 선호도 분석을 위하여 협업여과추천방법 및 내용기반추천방법을 적용하였다. 또한 보다 정확한 추천을 위한 최종 콘텐츠 추천을 위하여 웹사이트 상의 콘텐츠에 대한 위치정보를 활용한 추천방법을 제안하고 있다. 이를 통하여 보다 효율적이고 정확한 추천 서비스의 제공이 가능할 수 있다.

Abstract

In this paper, we propose user contents using behavior and location information on contents on various channels, such as web, IPTV, for contents distribution. With methods to build user and contents profiles, contents using behavior as an implicit user feedback was applied into machine learning procedure for updating user profiles and contents preference. In machine learning procedure, contents-based and collaborative filtering methods were used to analyze user's contents preference. This study proposes contents location information on web sites for final recommendation contents as well. Finally, we refer to a generalized recommender system for personalization. With those methods, more effective and accurate recommendation service can be possible.

참고문헌

1

김용. (2006). 멀티미디어 콘텐츠를 위한 이용빈도 기반 하이브리드 추천시스템에 관한 연구.

2

김용. (2005). 학습알고리즘 기반의 하이브리드 개인화 추천시스템 개발에 관한 연구. 한국문헌정보학회지, 39(3), 75-91.

3

이기현. (2002). 연관 규칙과 협력적 여과 방식을 이용한 추천 시스템. 지능정보연구, 8(2), 91-103.

4

이수정. (2004). 사용자 경향에 기반한 동적 추천 기법: 영화 추천 시스템을 중심으로. 정보과학회논문지 : 소프트웨어 및 응용, 31(2), 153-163.

5

정경용. (2004). 개인화 추천 시스템에서 연관 관계 군집에 의한 아이템 기반의 협력적 필터링 기술. 정보과학회논문지 : 소프트웨어 및 응용, 31(4), 467-477.

6

정영미. (2002). 필터링 기법을 이용한 도서 추천 시스템 구축. 정보관리연구, 33(1), 1-17.

7

황성희. (2001). 인구통계학적 특성에 따른 협동적여과 알고리즘의 추천 효율 분석 (362-368). 2001 한국데이타베이스 학회 춘계 논문집.

8

Billsus, D. (2000). User mo- deling for adaptive news access. User Modeling and User Adaptive Interaction, 10(2), 147-180.

9

Burke, R. (2002). Hybrid Recommender Sys- tems: Survey and Experiments. User Modeling and User Adapted Interaction, 12(4), 331-370.

10

Deshpande, Mukund. (2004). Item-Based Top-N Recommendation Algorithms. ACM Transactions on Information Systems, 22(1), 143-177.

11

Fink, J. (2002). User Modelling for Personalized City Tours. Artificial Intelligence Review, 18, 33-74.

12

Hair, J. F. (1998). Multivariate Data Analysis:Prentice-Hall.

13

Hill, Will. (1995). Recommending and Evaluating Choices in a Virtual Community of Use (194-201). Proc. of CHI ‘95 Conference on Human Factors in Com-puting Systems.

14

Linden, G. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76-80.

15

Rensnick, P. (1994). GroupLens: An Open Architecture for Collaborative Filtering of Netnews (175-186). Proc. of the 1994 Computer Supported Cooperative Work conference.

16

Sarwar, B. (2002). Getting to Know you: Learning New User Preferences in Recommender System for Groups of Users (127-134). Proc. of the 7th International conference on Intelligent user inter-faces.

17

Sarwar, B. (2001). Item based collaborative filtering recommendation algorithms (285-295). Proc. of the 10th International World Wide Conference.

18

Shardanand, U. (2000). Social information filtering: Algorithms for automating ‘word of mouth' (210-217). Proc. of ACM CHI ‘95 Conference on Human Factors in Computing Systems.

정보관리학회지