바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073

대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구

A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents

정보관리학회지, (P)1013-0799; (E)2586-2073
2007, v.24 no.2, pp.89-104
https://doi.org/10.3743/KOSIM.2007.24.2.089
김용 (KT 인프라)
문성빈 (연세대학교)

  • 다운로드 수
  • 조회수

초록

본 연구는 대용량 음악콘텐츠환경에서 개인화 추천 서비스를 위한 기반구조의 제공을 위하여 시도되었다. 추천서비스를 위한 기존의 많은 연구와 상용프로그램에도 불구하고 대규모의 쇼핑몰들은 개인화 추천서비스와 실시간으로 대용량의 데이터를 처리할 수 있는 추천시스템을 필요로 하고 있다. 이를 위하여 본 연구에서는 데이터마이닝 기술과 새로은 패턴매칭 알고리즘을 제안하고 있다. 콘텐츠 주제분야에 대한 이용자의 선호도를 이용한 이용자 분할을 위하여 군집화 기법이 사용되었다. 다음으로는 군집화를 통하여 생성된 분할된 이용자 그룹에서 개별 이용자의 콘텐츠에 대한 접근 패턴의 추출을 위하여 순차패턴 마이닝기법을 적용하였다. 최종적으로 각각의 이용자 군집의 콘텐츠 접근 패턴과 콘텐츠 선호도에 기반한 제안된 추천 알고리즘에 의해 추천이 이루어진다. 이러한 추천을 위하여 기반구조와 함께, 전처리과정과 원본 데이터의 형식변환이 데이터베이스에서 수행되어진다. 본 연구에서 제안하고 있는 기반구조의 적절성을 보여주기 위하여 제안된 시스템을 구현하였다. 실제 이용자에 의해 이용된 데이터를 실험에 적용하였으며, 해당 실험에서 추천은 실시간으로 이루어졌으며 추천결과에 있어서는 적절한 정확성을 보여주고 있다.

Abstract

This study attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of many existing studies and commercial solutions for a recommendation service, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time.This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. Finally, the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.

참고문헌

1

Balabanovic, M. (1997). Fab: Content-based, collaborative recommendation. 40(3), 66-72.

2

Basu, C. (1998). Recommendation as Classification Using and Content-based Information in Recommendation. , 714-720.

3

Claypool, M. (1999). Combining content-based and collaborative filters in an online newspaper. , -.

4

Hill, W. (1995). Recommending and evaluating choices in a virtual community of use. , 194201-.

5

Choi, Hyun-Wha. (2005). Multi-Level Linear Location Tree for Efficient Sequential Pattern Mining. 277(1), 369-374.

6

Kim, Hyun-Hee. (2002). A Study on the Design and Evaluation of the Model of MyCyber Library for a Customized Information Service. 19(2), 132-157.

7

Kim, Yong. (2005). A Study on Development of Hybrid Personalization Recommendation System based on Learning Algorithm. 39(3), 75-81.

8

Mobasher, B. H. (2000). Discovery of aggregate usage profiles for web personalization. , -.

9

N. Iacovou. An open architecture for collaborative filtering of NetNews Proc. of the ACM CSCW’94 Conference on Computer-Supported Cooperative Work. , -.

10

Sarwar, B. (2000). Analysis of recommendation algorithms for e-commerce. , -.

11

Sarwar, B. (2001). Item-based collaborative filtering recommendation algorithms. , -.

12

Shardanand, U. (1995). Social information filtering: Algorithms for word of mouth. , 210-217.

13

Srikant, Ramakrishnan. (1998). Mining Sequential Patterns: Generalizations and Performance Improvements. , -.

14

Weng, Sung-Shun. (2004). Feature-based recommendations for one-to-one marketing. 26(4), 493-508.

정보관리학회지