바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

검색어: word co-occurrence, 검색결과: 3
1
김판준(신라대학교) ; 이재윤(경기대학교) 2007, Vol.24, No.4, pp.285-303 https://doi.org/10.3743/KOSIM.2007.24.4.285
초록보기
초록

본 연구는 연구 영역 분석을 위하여 통제어휘와 비통제어휘를 연계해서 사용하는 새로운 방법을 모색하기 위한 것이다. 동시출현단어분석은 크게 통제어휘와 비통제어휘를 사용하는 경우의 두 가지 유형으로 구분할 수 있는데, 통제어휘를 사용할 경우에는 자료 희귀성 및 색인자 효과가 단점이며, 비통제어휘를 사용할 경우에는 저자의 주관에 따른 단어 선택 및 단어의 중의성이 문제가 된다. 이 연구에서는 양자를 보완할 수 있는 방법으로, 통제어휘인 디스크립터를 비통제어휘인 단어와의 동시출현 정보로 표현하는 디스크립터 프로파일링을 제안하였다. 정보학 분야에 적용해본 결과, 디스크립터 프로파일링은 특정 영역의 최신 동향을 파악하는데 있어 통제어휘와 비통제어휘가 갖는 본질적인 문제점을 어느 정도 보완할 수 있는 것으로 나타났다.

Abstract

This study aims to explore a new technique making complementary linkage between controlled vocabularies and uncontrolled vocabularies for analyzing a research domain. Co-word analysis can be largely divided into two based on the types of vocabulary used: controlled and uncontrolled. In the case of using controlled vocabulary, data sparseness and indexer effect are inherent drawbacks. On the other case, word selection by the author's perspective and word ambiguity. To complement each other, we suggest a descriptor profiling that represents descriptors(controlled vocabulary) as the co-occurrence with words from the text(uncontrolled vocabulary). Applying the profiling to the domain of information science implies that this method can complement each other by reducing the inherent shortcoming of the controlled and uncontrolled vocabulary.

초록보기
초록

개체들 사이의 관계를 저차원 공간에 매핑하는 다차원척도법을 수행하기 위한 다양한 방법과 알고리즘이 개발되어왔다. 그러나 PROXSCAL이나 ALSCAL과 같은 기존의 기법들은 50개 이상의 개체를 포함하는 데이터 집합을 대상으로 개체 간의 관계와 군집 구조를 시각화하는데 있어서 효과적이지 못한 것으로 나타났다. 이 연구에서 제안하는 군집 지향 척도법 CLUSCAL(CLUster-oriented SCALing)은 기존 방법과 달리 입력되는 데이터의 군집 구조를 고려하도록 고안되었다. 50명의 저자동시인용 데이터와 85개 단어의 동시출현 데이터에 대해서 적용해본 결과 제안한 CLUSCAL 기법은 군집 구조를 잘 식별할 수 있는 MDS 지도를 생성하는 유용한 기법임이 확인되었다.

Abstract

There have been many methods and algorithms proposed for multidimensional scaling to mapping the relationships between data objects into low dimensional space. But traditional techniques, such as PROXSCAL or ALSCAL, were found not effective for visualizing the proximities between objects and the structure of clusters of large data sets have more than 50 objects. The CLUSCAL(CLUster-oriented SCALing) technique introduced in this paper differs from them especially in that it uses cluster structure of input data set. The CLUSCAL procedure was tested and evaluated on two data sets, one is 50 authors co-citation data and the other is 85 words co-occurrence data. The results can be regarded as promising the usefulness of CLUSCAL method especially in identifying clusters on MDS maps.

3
이재윤(명지대학교 문헌정보학과) ; 정은경(이화여자대학교 문헌정보학과) 2022, Vol.39, No.1, pp.309-330 https://doi.org/10.3743/KOSIM.2022.39.1.309
초록보기
초록

학문의 구조, 특성, 하위 분야 등을 계량적으로 규명하는 지적구조 분석 연구가 최근 급격히 증가하는 추세이다. 지적구조 분석 연구를 수행하기 위하여 전통적으로 사용되는 분석기법은 서지결합분석, 동시인용분석, 단어동시출현분석, 저자서지결합분석 등이다. 이 연구의 목적은 키워드서지결합분석(KBCA, Keyword Bibliographic Coupling Analysis)을 새로운 지적구조 분석 방식으로 제안하고자 한다. 키워드서지결합분석 기법은 저자서지결합분석의 변형으로 저자 대신에 키워드를 표지로 하여 키워드가 공유한 참고문헌의 수를 두 키워드의 주제적 결합 정도로 산정한다. 제안된 키워드서지결합분석 기법을 사용하여 Web of Science에서 검색된 ‘Open Data’ 분야의 1,366건의 논문집합을 대상으로 분석하였다. 1,366건의 논문집합에서 추출된 7회 이상 출현한 63종의 키워드를 오픈데이터 분야의 핵심 키워드로 선정하였다. 63종의 핵심 키워드를 대상으로 키워드서지결합분석 기법으로 제시된 지적구조는 열린정부와 오픈사이언스라는 주된 영역과 10개의 소주제로 규명되었다. 이에 반해 단어동시출현분석의 지적구조 네트워크는 전체 구성과 세부 영역 구조 규명에 있어 미진한 것으로 나타났다. 이러한 결과는 키워드서지결합분석이 키워드 간의 서지결합도를 사용하여 키워드 간의 관계를 풍부하게 측정하기 때문이라고 볼 수 있다.

Abstract

Intellectual structure analysis, which quantitatively identifies the structure, characteristics, and sub-domains of fields, has rapidly increased in recent years. Analysis techniques traditionally used to conduct intellectual structure analysis research include bibliographic coupling analysis, co-citation analysis, co-occurrence analysis, and author bibliographic coupling analysis. This study proposes a novel intellectual structure analysis method, Keyword Bibliographic Coupling Analysis (KBCA). The Keyword Bibliographic Coupling Analysis (KBCA) is a variation of the author bibliographic coupling analysis, which targets keywords instead of authors. It calculates the number of references shared by two keywords to the degree of coupling between the two keywords. A set of 1,366 articles in the field of ‘Open Data’ searched in the Web of Science were collected using the proposed KBCA technique. A total of 63 keywords that appeared more than 7 times, extracted from 1,366 article sets, were selected as core keywords in the open data field. The intellectual structure presented by the KBCA technique with 63 key keywords identified the main areas of open government and open science and 10 sub-areas. On the other hand, the intellectual structure network of co-occurrence word analysis was found to be insufficient in the overall structure and detailed domain structure. This result can be considered because the KBCA sufficiently measures the relationship between keywords using the degree of bibliographic coupling.

정보관리학회지