바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: relevance consistency, 검색결과: 10
1
ScholtenStacey(연세대학교 문헌정보학과) ; 문성빈(연세대학교 문헌정보학과 교수) 2021, Vol.38, No.3, pp.1-22 https://doi.org/10.3743/KOSIM.2021.38.3.001
초록보기
초록

본 논문은 주제분야 전문지식이 적합성 판단에 미치는 영향을 온라인 실험을 통해 살펴보고 주제분야 전문지식이 적합성개념의 기반이 될 수 있는 지를 검증해 보려고 하였다. 문헌정보학 전문가 6명, 문헌정보학 석사과정 학생 9명, 비전문가 12명이 실험에 참여해 문헌정보학 분야에 대한 14개 논문초록과 문헌정보학 영역 이외 14개 논문초록의 적합성을 판정을 실시하였다. 적합성 판단의 일관성은 공동 확률 일치성(Joint-Probability Agreement, PA)과 IBM SPSS의 클래스간 상관관계 계수(Interclass Correlation Coefficient, ICC)를 통해 산출되었다. PA를 사용한 경우, 비전문가는 과제나 그룹 구분에 상관없이 높은 일관성이 보였다. ICC 계산에 따르면, 문헌정보학 전문가들과 비교하였을 때, 문헌정보학 석사과정학생들은 비전문가들보다 높은 수준의 일관성을 가지고 있다는 것으로 나타났다. 2개 그룹(석사 및 박사를 통합으로 하는 전문가그룹과 비전문가)으로 구분하였을 때는 문헌정보학분야 과제에서 예상대로 전문가들이 더 높은 수준의 일관성을 보이는 경향을 볼 수 있었다.

Abstract

An online experiment was conducted to test the subject-knowledge view of relevance theory in order to find evidence of a conceptual basis for relevance. Six experts in Library and Information Science (LIS), nine Master’s students of LIS, and twelve non-experts judged the relevance of 14 abstracts within and outside of the LIS domain. Consistency among the judges was calculated by joint-probability agreement (PA) and interclass correlation coefficients (ICC). When using PA to analyze the judgements, non-experts had a higher consensus regardless of the task or division of groups. However, ICC calculations found Master’s candidates had a higher level of consensus than non-experts within LIS, although the experts did not; and the agreement rates on the non-LIS task for all groups were only poor to moderate. It was only when the groups were analyzed as two groups (experts including Master’s candidates and non-experts) that the expected trend of higher consistency among experts in the LIS task was seen.

초록보기
초록

본 논문에서는 문헌의 적합성수준을 적합성정도에 따라 4그룹(부적합한, 조금 적합한, 적합한, 매우 적합한)으로 나눈 후 서로 다른 심사자가 적합성 판정을 내린 4개의 적합성 판정세트(A, B, C, D)에서 “조금 적합한” 문헌을 부적합문헌으로 분류했을 때와 적합문헌으로 분류하였을 때에, 초록/표제 시스템과 전문검색시스템에서 적합성피드백으로 인한 검색효율성의 증진은 어느 쪽이 더 혜택을 받게 되는 지를 연구하였다. “조금 적합한” 문헌을 적합문헌으로 포함시켰을 때 초록/표제시스템이 전문검색시스템보다 모든 적합성판정세트에서 검색효율성의 증가율이 높았고, 반면에 전문검색시스템에서는 “조금 적합한” 문헌을 적합문헌그룹에서 제외시켰을 때 검색효율성의 증가율이 일관성 있게 높아지는 것을 발견하였다. 이는 전문검색시스템에서는 적합문헌으로 포함된 “조금 적합한” 문헌으로부터 얻어지는 적합성피드백 정보는 잡음의 역할을 하게 되어 검색효율성의 증진에 도움이 안 되고 있음을 암시하고 있다. 특히, 매우 동질적인 문헌을 색인 및 검색대상으로 하고 있는 전문검색시스템에서는 잡음에 의해 초래되는 낮은 정확률을 개선하는 정교한 검색기법에 대한 연구가 지속되어야만 한다.

Abstract

This study examined the relative retrieval effectiveness after relevance feedback between two systems (Title/Abstract and Full-text) using four different sets of relevance judgment. Four relevance levels (not relevant, marginally relevant, relevant, highly relevant) are also used, each of which is determined by referees giving a relevance score to documents. This study also investigated how much the average precision was improved after relevance feedback when “marginally relevant” documents are included in the relevant class with the Title/Abstract system, and with the Full-text retrieval system as well. It is found that the Title/Abstract system benefited from relevance feedback with the marginally relevant documents. In case of the Title/Abstract system, the higher percentage of improvement was consistently obtained when including the marginally relevant documents in the relevance class, however the result was vice versa in case of the Full-text retrieval system. It implied that the marginally relevant documents in the relevant class had caused noises in the Full-text retrieval system.

초록보기
초록

웹 상의 의학 분야 자료들은 방대한 규모로 존재하며, 각 검색엔진에서는 이를 분류하여 제공하고 있으나 그 구성에 있어서 일관성과 체계성이 부족하다. 따라서 본 논문은 검색엔진에서 의학 분야 웹 자료 분류체계를 구성하기 위하여 의학 전문 문헌분류표인 NLMC를 준용하고, 항목의 배열이 주제간 관련성을 기반으로 이루어져야 한다는 것을 제안하였다. 또한 순환성을 고려한 1차 분류 및 2차 분류 항목에서의 중복 분류시, 그에 대한 명확한 기준이 설정되어야 하며, 분류 항목명을 의학 분야 표준 용어집인 MeSH와 의학용어집의 용어로 선택하여 기존의 도서관 정보검색시스템과의 상호호환성을 높여야 한다는 것을 제안하였다.

Abstract

There are lots of Web materials in the field of medicine and many search engines classify the medical materials on the Web through directories. But the organization of these directories are wanting in consistency and systematization. In order for manager of search engines to organize medical materials on the Web systematically, this paper suggests several guidelines. NLMC, a special classification system for medicine, need to be applied to develop directories of medicine in search engines. Also, items of the directories should be arranged based on the relevance of subjects among subfields of medical science. For classifying an item to several directories repeatedly, clear criteria should be established. In addition to, controlled vocabularies or glossaries for medicine such as MeSH and the English-Korean, Korean-English Medical Terminology Collection should be used for selection of the name of items in medical directories.

4
최상희(대구가톨릭대학교) ; 서은경(한성대학교) 2006, Vol.23, No.2, pp.229-243 https://doi.org/10.3743/KOSIM.2006.23.2.229
초록보기
초록

질의응답문서는 이용자가 입력한 질의, 질의설명, 답을 아는 다른 이용자가 제시한 응답으로 구성된 구조화된 문서로서, 최근 웹 문서처럼 검색이 일반적으로 일어나고 있는 정보원이다. 이 연구에서는 질의응답문서의 구조적 특성을 기반으로 질의를 재생성하여 질의응답문서의 검색효율을 향상시키고자 하였다. 질의재생성 실험에서 성능이 비교된 문서구조는 질의와 응답내용이다. 질의를 기반으로 질의를 재생성하는 방식에서는 질의응답검색 시스템에 입력되어 있는 유사질의를 활용하여 클러스터링하는 기법이 적용되었다. 응답정보를 기반으로 질의를 재생성하는 방식에서는 가장 유사한 기존 질의에 대해 응답된 내용에서 단락검색으로 적합한 문장들을 선정하여 활용하는 기법이 적용되었다. 실험 결과 응답정보를 활용하여 질의를 재생성하는 방식이 정확률은 유지하면서 더 다양한 검색결과를 제공하는 것으로 나타났다.

Abstract

This study aims to suggest an effective way to enhance question-answer(QA) document retrieval performance by reconstructing queries based on the structural features in the QA documents. QA documents are a structured document which consists of three components: question from a questioner, short description on the question, answers chosen by the questioner. The study proposes the methods to reconstruct a new query using by two major structural parts, question and answer, and examines which component of a QA document could contribute to improve query performance. The major finding in this study is that to use answer document set is the most effective for reconstructing a new query. That is, queries reconstructed based on terms appeared on the answer document set provide the most relevant search results with reducing redundancy of retrieved documents.

초록보기
초록

본 연구의 목적은 객체-관계형 데이터베이스 접근에 의한 XML 문헌의 검색 성능을 평가하는 것이다. 본 논문에서는 INEX(Initiative for the Evaluation of XML retrieval)에서의 XML 문헌의 색인 및 검색 방법에 대하여, 그리고 실험 방법론들에 대하여 기술하고 있다. 대부분의 전통적인 정보검색 성능평가 실험에서와 같이 본 연구에서 사용된 테스트 콜렉션(test collection)은 문헌(즉, XML 문헌), 토픽, ad hoc 검색, 적합성 판단, 평가로 이루어졌다. 그리고 ORDBMS 기술들을 기반으로 개발된 전용 XML 데이터베이스의 일종인 EXIMATM Supply을 사용하여 INEX에서 제공한 대규모 XML 문헌들을 저장하고 검색하였다. 본 논문에서는 실험에서 사용한 시스템에 대한 개략적인 기능들과 색인 및 검색 과정 그리고 INEX 2002에서의 성능평가 결과에 대하여, 앞으로 개선되어야 할 기능에 대하여 논하고 있다.

Abstract

The purpose of this study is to evaluate the performance of XML retrieval based on ORDBMSs(Object-Relational Database Management Systems) approach. This paper describes indexing and retrieval methods for XML documents and the methodologies of experiments at INEX(Initiative for the Evaluation of XML retrieval). Like any other traditional information retrieval experiment, the test collection was consists of documents, topics/queries, task, relevance assessments and evaluation. EXIMATM Supply, a kind of native XML DB based on ORDBMS technologies, is used for this experiment. Although this approach has many benefits, for example, no delay in storing and searching XML documents, but it showed relatively disappointed retrieval performance at INEX 2002. This result may caused since the given topics had to be decomposed and modified to be processed by the XPath processor, and during this modification the original meaning of topics can be changed inevitably and some important information may pass over.

초록보기
초록

OPAC으로 대표되던 도서관 목록에 많은 변화를 가져오고 있는 차세대 목록의 핵심 개념인 자원 발견 인터페이스 중의 하나인 패싯 내비게이션은 지나치게 많은 검색 결과를 이용자의 이용 편의에 맞는 하위 집합으로 세분하는 것이다. 이 연구에서는 자원 발견 인터페이스를 도입하여 사용하고 있는 국내외 9개 도서관의 패싯 내비게이션을 분석하였다. 패싯을 구성하는 용어가 지나치게 포괄적이거나 이용자가 사용하는 개념과 달라서 이용에 어려움을 줄 수도 있음을 알 수 있었다. 패싯 내비게이션 서비스를 이용자에게 제공하기 위해서는 패싯에서 사용하는 용어 사용의 일관성을 유지하는 것이 중요하며, 저자 패싯의 분석에서는 전거통제의 정확성의 정도를 파악할 수 있었다. 그리고 패싯 내비게이션을 도입할 공공도서관에서는 이용자 계층에 맞는 패싯을 포함시키는 것을 고려해야 하고, 대학도서관에서는 자원 유형을 상세하게 전개하는 것을 고려해야 한다.

Abstract

Faceted navigation has brought a lot of changes to traditional library catalog and is one of the resource discovery interfaces in next-gen library catalog. Faceted navigation usually divides too much retrieved results into some relevant facets for user's convenient navigation. The faceted navigation of 9 libraries adopting resource discovery interfaces was analyzed in this article. The terms are much broader or different from the users' terms so that the users can't properly use the facets. It is essential to maintain consistency with using the terms to provide users with faceted navigation service and this study has found how exactly authority work was done in analysis of the author facets. Also, public libraries introducing faceted navigation need to consider including some facets for various users and university libraries need to consider detailed division of resource types.

7
이정희(한국해양대학교) ; 김희섭(경북대학교) 2007, Vol.24, No.3, pp.343-362 https://doi.org/10.3743/KOSIM.2007.24.3.343
초록보기
초록

이 연구에서는 우리나라 국공립 대학의 전자기록관리시스템이 보다 적합한 전자기록물을 검색할 수 있는 기반 환경을 조성하기 위하여 온톨로지 기반의 검색시스템을 설계 및 구현하였고 그 성능을 기존의 키워드 기반 검색시스템과 비교해 보았다. 온톨로지 기반 검색시스템은 OntoStudio 1.4를 사용하여 자체 설계 및 구현하였으며, 실험에 사용된 실험 컬렉션의 구성은 다음과 같다: (1) 문서는 한국해양대학교의 2005년도 전자문서관리시스템에서 생성한 인사발령통보’ 5,099건의 전자기록물, (2) 질의집단은 장문10개와 단문10개 총20개, 그리고 (3) 적합성평가는 전문가 집단에 의하여 이루어졌다. 한편 키워드 기반 검색시스템의 성능평가 실험은 기존의 전자기록관리시스템을 이용하여 10명의 피실험자에 의하여 온톨로지 기반 검색시스템과 동일한 실험 컬렉션을 사용하여 이루어졌다. 재현율과 정확률에 의한 성능을 비교해본 결과 온톨로지 기반의 검색시스템이 키워드 기반의 검색시스템 보다 뛰어난 성능을 보였다. 또한 온톨로지 기반 검색시스템은 단문보다는 장문의 질의에서 다소 뛰어난 성능을 보였다.

Abstract

The purpose of this study is to design and implement an ontology-based retrieval system for the electronic records of universities and to compare its performance with the existing keyword-based retrieval system. We used OntoStudio 1.4 for implementing an ontology-based retrieval system, and the test collection consisted of the following: (1) 5,099 electronic records of the 'personnel management notification' created by Korea Maritime University, (2) 20 topics (10 short-topics and 10 long-topics), and (3) the relevant assessments were conducted by the group of human experts. 10 university staff participated in the experiment of keyword-based searching and used the same test collection as used in the experiment of ontology-based searching. The ontology-based retrieval system outperformed to the keyword-based retrieval system in terms of Recall and Precision, and it showed better results with long-topic than with short-topic types.

8
임진희(한국국가기록연구원) ; 우수영(명지대학교 디지털 아카이빙연구소) 2009, Vol.26, No.1, pp.107-124 https://doi.org/10.3743/KOSIM.2009.26.1.107
초록보기
초록

2008년 12월 1일부터 교육관련기관의 정보공개에 관한 특례법에 따라 대학정보공시제도가 시행되었다. 대학은 다중의 이해당사자들에게 정보공시의 의무를 갖게되었을 뿐만 아니라 광범위한 정보공개의 의무를 갖고 있어 이러한 설명책임에 대응하기 위한 전략을 수립해야 할 시점에 놓이게 되었다. 이 글의 목적은 대학정보공시를 계기로 대학의 설명책임성 구조를 살펴보고, 정보공개와 공시를 포함하여 향후 증대될 설명책임 실무를 효과적․효율적으로 수행해 나가기 위해 필요한 대학의 대응 방안을 제시하는 것이다. 이를 위해 대학의 업무를 증거정보 중심의 실무로 재설계하는 방법을 소개하고, 설명책임 메커니즘의 고도화를 위해 설명책임의 역할 책임 명시화, 정보공개와 공시 프로세스 개선, 설명책임 정보시스템 구축을 제안하고 있다.

Abstract

On Dec 1, 2008, according to the special law for the information disclosure of education relevant institutes, the educational information of each university is opened at their homepages and at portal web sites. Every university, thus, is in the moment to set up strategies to consistently respond to following information disclosure as well as the one already disclosed. The strategy should contain the assurance of the basic accountability mechanism of the university. On the occasion of the public announcement of the university information, the present study has a purpose to examine the structure of the university accountability and to suggest a mechanism, which is necessary for effectively and efficiently executing the increasing accountability practices in disclosing and announcing the information. To meet the purpose, this study introduces how to redesign university jobs as practices focused on evidence information for the accountability and also suggests solutions how to improve the mechanism for the accountability responsibility, which include clarifying the roles and responsibilities for accountability jobs, revising the process of information disclosure and building the information systems for an accountability.

9
김성훈(성균관대학교 문헌정보학과) ; 오삼균(성균관대학교 문헌정보학과) 2018, Vol.35, No.2, pp.141-165 https://doi.org/10.3743/KOSIM.2018.35.2.141
초록보기
초록

본 연구의 목적은 연구데이터 관리서비스 구현 시 성공적인 서비스를 위한 고려사항을 도출하는 것이다. 이를 위해 선행연구를 활용하여 연구데이터 관리서비스의 영역을 파악하였고, 미국, 독일, 호주에서 연구데이터 관리서비스를 시행중인 대학도서관 6곳과 1개의 기관에서 담당자 8명을 대상으로 연구데이터 서비스에 관한 질문의 답변을 이메일을 통해 수집하였다. 또 해외서비스를 대상으로 수집한 고려사항이 국내에 적용가능한지 국내 연구데이터 관리서비스 전문가와 검토하였다. 연구데이터 서비스 영역은 총 9개의 카테고리로 구분하여 분석하였는데, 연구서비스와 연구데이터 관리서비스 연계, 국가/대학/기관 차원의 협약, 메타데이터 입력주체 및 필수 요소, 직원의 전문화 방안, 이용자 요구분석을 통한 주요서비스 영역 선정, 연구데이터와 연구결과물의 효과적인 연결방안, 이용자와 유관기관과 긴밀한 공조 등의 연구데이터 관리서비스 구축 시 고려사항을 도출할 수 있었다.

Abstract

The purpose of this study is to determine crucial factors of consideration in ensuring the successful implementation of research data management services. The study begins by extracting a range of service areas from their equivalent in existing research on data management services. It then collects relevant information via e-mail survey from eight individuals respectively overseeing research data management services at six university libraries and one institution located throughout the United States, Germany, and Australia. Having originated in overseas cases, the resulting factors of consideration were reviewed by domestic experts in research data management services. The finalized areas of research data management services consist of nine categories. The crucial factors of consideration in RDM services are connection between research services and research data management services; national/university-level/institutional agreements; metadata entry personnel and required elements; strategies for the provision of specialized staff; major service area selection through user demand analysis; effective linkage between research data and research results; and close cooperation with users and related organizations.

10
백우진(건국대학교) ; 신문선(안양대학교) ; 경명현(건국대학교) ; 민경수(건국대학교) ; 오혜란(건국대학교) ; 임차미(건국대학교) 2007, Vol.24, No.2, pp.123-141 https://doi.org/10.3743/KOSIM.2007.24.2.123
초록보기
초록

주시가격을 예측하는 것은 주식 가격 변동에 영향을 미치는 많은 요인과 요인 간의 상호작용에 기인하여 매우 어렵다고 알려져 있다. 이 연구는 어떤 회사에 대한 좋은 기사는 그 회사의 주식가격을 오르도록 영향을 미칠 것이고 나쁜 기사는 그 반대의 작용을 할 것이라는 가정에서 시작했다. 여러 회사들에 대한 기사와 그 회사의 주식가격이 기사가 공개된 후에 어떻게 변했는가에 대한 분석을 통하여 위 가정이 맞는 것을 확인했다. 즉 기사의 내용을 기사에 나온 회사에 대하여 호의적인지 아닌지 신뢰성 있게 분류하는 방법이 있다면 어느 정도의 주식 가격 예측은 가능할 것이다. 많은 기사를 일관적으로 빨리 처리하기 위하여 상장회사에 대한 기사를 자동 분석하는 다단계 뉴스 분류시스템을 개발한 후 성능을 확인하여 자동 시스템이 무작위로 주가 변동을 예측했을 경우보다 높은 정확률을 보이는 것을 확인했다.

Abstract

It has been known that predicting stock price is very difficult due to a large number of known and unknown factors and their interactions, which could influence the stock price. However, we started with a simple assumption that good news about a particular company will likely to influence its stock price to go up and vice versa. This assumption was verified to be correct by manually analyzing how the stock prices change after the relevant news stories were released. This means that we will be able to predict the stock price change to a certain degree if there is a reliable method to classify news stories as either favorable or unfavorable toward the company mentioned in the news. To classify a large number of news stories consistently and rapidly, we developed and evaluated a natural language processing based multi-stage news classification system, which categorizes news stories into either good or bad. The evaluation result was promising as the automatic classification led to better than chance prediction of the stock price change.

정보관리학회지