바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: recommendation system, 검색결과: 18
1
홍연경(성균관대학교 문헌정보학과) ; 전서영(성균관대학교 문헌정보학과) ; 최재영(성균관대학교 문헌정보학과) ; 양희윤(성균관대학교 문헌정보학과) ; 한채은(성균관대학교 문헌정보학과) ; 주영준(성균관대학교) 2021, Vol.38, No.2, pp.113-127 https://doi.org/10.3743/KOSIM.2021.38.2.113
초록보기
초록

본 연구는 대학 도서관 사용 증진을 위하여 개인별 맞춤 도서 추천시스템을 구축하는 것을 목적으로 한다. 특히 사용자의 아이템에 대한 선호도가 존재하는 다수의 추천시스템과는 달리, 선호도가 존재하지 않을 때에 도서 추천이 가능하도록 하는 방안인 도서관 이용자의 도서 대출 목록과 성향을 활용하여 평가지표를 생성하는 방법을 제안하고자 한다. 이용자가 아직 읽지 않은 책에 대한 예상 선호도를 산출하는 방식으로 도서를 추천하는 행렬 분해 방법인 Singular Value Decomposition(SVD)과 Stochastic Gradient Descent(SGD) 알고리즘을 활용한 모델을 구축했다. 더불어 유사도가 높은 이용자 그룹 내의 도서 대출 목록을 참조하여 추천하는 사용자 기반 협업 필터링 알고리즘을 활용해 모델을 구현했다. 최종적으로 평가지표를 활용한 세 가지 모델에 대하여 사용자 평가를 진행했다. 각각의 모델이 제시한 개인별 맞춤 도서 다섯 권의 목록을 해당 대출자에게 제공하고, 추천 도서에 대한 만족/불만족 여부를 이진화 점수화하여 모델에 대한 평가를 진행했다.

Abstract

The purpose of this study is to propose a personalized book recommendation system to promote the use of university libraries. In particular, unlike many recommended services that are based on existing users’ preferences, this study proposes a method that derive evaluation metrics using individual users’ book rental history and tendencies, which can be an effective alternative when users’ preferences are not available. This study suggests models using two matrix decomposition methods: Singular Value Decomposition(SVD) and Stochastic Gradient Descent(SGD) that recommend books to users in a way that yields an expected preference score for books that have not yet been read by them. In addition, the model was implemented using a user-based collaborative filtering algorithm by referring to book rental history of other users that have high similarities with the target user. Finally, user evaluation was conducted for the three models using the derived evaluation metrics. Each of the three models recommended five books to users who can either accept or reject the recommendations as the way to evaluate the models.

2
남영준(중앙대학교 문헌정보학과 교수) 2021, Vol.38, No.3, pp.311-334 https://doi.org/10.3743/KOSIM.2021.38.3.311
초록보기
초록

이 연구의 목적은 합리적인 장서관리정책 수립을 위한 이론적 근거와 계량화된 객관적 기준점 제시이다. 본 연구의 연구결과를 요약하면 다음과 같다. 스테디셀러는 정기간행물 형태의 학습서가 대부분이었다. 또한, 현대소설로서 스테디셀러는 특정 작가에 의존하는 현상을 확인할 수 있었다. 베스트셀러는 출판사와 저자의 영향을 받는 것으로 조사되었다. 특히 만화와 아동용 교재를 출판하는 출판사의 도서는 베스트셀러 선정에 상당부분 상관성을 갖고 있었다. 추천된 도서 한 권당 추천 도서의 대출 수 평균은 14,871권이었으며, 베스트셀러로 선정된 도서 한 권당 평균 대출 수는 53,531권이었다. 한편 대출데이터를 기준으로 약 80~82%의 도서가 전체 상위권 대출의 90%를 감당하고 있고, 약 27~29%의 도서가 전체 상위권 대출의 50%를 감당하고 있었다. 이는 일련의 파레토법칙이 공공도서관 대출패턴에서도 굳건히 적용될 수 있음을 보여주고 있다. 문학의 대출은 전체 대출에서 50.6%를 차지하였으며, 문학 중에서 한국문학작품이 전체 51.3%를 차지하였다. 자연과학은 다른 주제분야에 비해 상대적으로 작은 수의 문헌으로 더 많은 대출을 발생시키고 있었다.

Abstract

The purpose of this study is to present the theoretical basis and quantified objective standards for the establishment of collection management policy. The study results are summarized as follows. Most of the study books were in the form of periodicals as a steady seller. Most of the steady sellers were textbooks which published periodically. As a modern novel, a steady seller was able to confirm the phenomenon of dependence on a specific author. Bestsellers were investigated to be influenced by publishers and authors. Books of publishers that publish comics and children’s textbooks had a significant correlation with the selection of bestsellers. The average number of recommended books borrowed per recommended book was 14,871. The average number of loans per book selected as a bestseller was 53,531. Based on the loan data, about 80-82% of all top-tier loans were covered by 90%, and about 27-29% of all top-ranked loans were covered by 50%. This shows that the Pareto Principle can be firmly applied to public library lending patterns. Loans in the field of literature accounted for 50.6% of the total loans. Among literature, Korean literature accounted for 51.3% of the total. The natural sciences were generating more loans with a relatively small pool of literature compared to other subject fields.

초록보기
초록

본 연구는 대용량 음악콘텐츠환경에서 개인화 추천 서비스를 위한 기반구조의 제공을 위하여 시도되었다. 추천서비스를 위한 기존의 많은 연구와 상용프로그램에도 불구하고 대규모의 쇼핑몰들은 개인화 추천서비스와 실시간으로 대용량의 데이터를 처리할 수 있는 추천시스템을 필요로 하고 있다. 이를 위하여 본 연구에서는 데이터마이닝 기술과 새로은 패턴매칭 알고리즘을 제안하고 있다. 콘텐츠 주제분야에 대한 이용자의 선호도를 이용한 이용자 분할을 위하여 군집화 기법이 사용되었다. 다음으로는 군집화를 통하여 생성된 분할된 이용자 그룹에서 개별 이용자의 콘텐츠에 대한 접근 패턴의 추출을 위하여 순차패턴 마이닝기법을 적용하였다. 최종적으로 각각의 이용자 군집의 콘텐츠 접근 패턴과 콘텐츠 선호도에 기반한 제안된 추천 알고리즘에 의해 추천이 이루어진다. 이러한 추천을 위하여 기반구조와 함께, 전처리과정과 원본 데이터의 형식변환이 데이터베이스에서 수행되어진다. 본 연구에서 제안하고 있는 기반구조의 적절성을 보여주기 위하여 제안된 시스템을 구현하였다. 실제 이용자에 의해 이용된 데이터를 실험에 적용하였으며, 해당 실험에서 추천은 실시간으로 이루어졌으며 추천결과에 있어서는 적절한 정확성을 보여주고 있다.

Abstract

This study attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of many existing studies and commercial solutions for a recommendation service, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time.This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. Finally, the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.

4
장령령(전남대학교 문헌정보학과) ; 장우권(전남대학교) 2016, Vol.33, No.1, pp.317-336 https://doi.org/10.3743/KOSIM.2016.33.1.317
초록보기
초록

오늘날 폭발적인 정보의 증가로 이용자들은 자신이 원하는 정보를 찾기 위해 엄청난 시간과 노력을 기울여야 한다. 이 문제를 해결하기 위하여 이용자의 정보요구를 분석하고 이용자에게 적합한 논문을 추천해주는 논문추천시스템이 등장하고 있다. 그러나 대부분의 논문추천시스템은 논문추천시스템의 핵심인 이용자 프로파일을 간과하고 있다. 따라서 이 연구는 논문추천시스템의 성능을 좌우하는 이용자 프로파일을 기존의 평균으로 계산하지 않고 새로운 TPIPF(Topic Proportion-Inverse Paper Frequency)로 계산하는 방법을 제안하였다. 제안된 방법과 기존의 방법을 모두 논문추천시스템에 적용하여 각각의 성능을 온라인 참고문헌 관리도구인 CiteULike에서 제공된 데이터 실험을 통하여 비교하였다. 그 결과 제안된 TPIPF 방법을 적용한 논문추천시스템의 성능이 더 높다는 것을 알 수 있었다.

Abstract

Nowadays users spend more time and effort to find what they want because of information overload. To solve the problem, scientific article recommendation system analyse users’ needs and recommend them proper articles. However, most of the scientific article recommendation systems neglected the core part, user profile. Therefore, in this paper, instead of mean which applied in user profile in previous studies, New TPIPF (Topic Proportion-Inverse Paper Frequency) was applied to scientific article recommendation system. Moreover, the accuracy of two scientific article recommendation systems with above different methods was compared with experiments of public dataset from online reference manager, CiteULike. As a result, the proposed scientific article recommendation system with TPIPF was proven to be better.

초록보기
초록

정보기술과 인터넷의 발전에 따른 정보의 폭발적인 증가로 인하여 정보과잉에 따른 적절한 정보의 선택이 필요하게 되었다. 이를 위하여 이용자가 정보를 효율적으로 이용할 수 있도록 검색 또는 여과하는 일을 수행하기 위하여 정보검색 및 정보여과 시스템이 등장하게 되었다. 이러한 일련의 정보환경의 변화에 대한 보다 적극적인 대응방법으로서 도서관 및 정보센터에서는 이용자가 원하는 정보를 정확하고 효율적으로 제공하기 위한 노력의 일환으로서 이용자에게 맞춤화된 정보 추천서비스 제공이 요구된다. 본 연구에서는 도서관 및 정보센터에서 적극적인 정보서비스를 위한 방법으로 이용자에게 맞춤화된 정보를 제공할 수 있는 개인화 추천시스템을 구축하기 위한 방안을 제안하였다. 이를 위하여 기존의 추천방법에 대한 장단점을 분석하고 기존 추천방법에 대한 문제점을 해결하기 위한 방법으로서 대용량 콘텐츠 및 이용자 환경에서 이용자의 콘텐츠 이용빈도를 기준으로 멀티미디어 콘텐츠를 위한 개인화된 하이브리드 추천방법을 제안하였다. 이를 위하여 이용빈도에 있어서 상위 이용자 및 콘텐츠를 분리하고 적절한 추천방법에 적용하기 위한 새로운 형태의 추천방법 및 대용량 추천시스템에 적합한 연관규칙과 협업여과방법에 대한 조합방법을 제안하였다.

Abstract

Recent advancements in information technology and the Internet have caused an explosive increase in the information available and the means to distribute it. However, such information overflow has made the efficient and accurate search of information a difficulty for most users. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Libraries and information centers have been in the forefront to provide customized services to satisfy the user's information needs under the changing information environment of today. The aim of this study is to propose an efficient information service for libraries and information centers to provide a personalized recommendation system to the user. The proposed method overcomes the weaknesses of existing systems, by providing a personalized hybrid recommendation method for multimedia contents that works in a large-scaled data and user environment. The system based on the proposed hybrid method uses an effective framework to combine Association Rule with Collaborative Filtering Method.

6
이정연(나사렛대학교) ; 신숙경(한국학술진흥재단) ; 이재윤(경기대학교) ; 정한민(한국과학기술정보연구원) ; 강인수(한국과학기술정보연구원) 2007, Vol.24, No.3, pp.43-65 https://doi.org/10.3743/KOSIM.2007.24.3.043
초록보기
초록

심사자 자동추천시스템은 심사 대상에 대한 포괄성, 전문성, 공정성, 타당성을 확보할 수 있도록 설계되어야 한다. 이를 위해 본 연구는 다면적인 학문분야분류표의 각 범주 간 연관성을 자동으로 산출할 수 있는 확률적 온톨로지를 적용하여 포괄적으로 심사자 추천 범위를 넓히고 전문성을 반영한 심사자 랭킹을 가능하도록 한다. 또한 연구자 간의 멘터, 공저역, 공동연구를 포함하는 연구자 네트워크를 구축하고 이를 심사자 배제 규칙으로 활용함으로써 공정한 심사자 추천이 이루어질 수 있도록 한다. 아울러, 전문가들을 통해 상기 방법론과 패널 결과를 검증 받아 타당성 있는 시스템이 갖추어야 할 방향을 제시한다.

Abstract

Automatic Recommendation System of Panel pool should be designed to support universal, expertness, fairness, and reasonableness in the process of review of proposals. In this research, we apply the theory of probabilistic ontology to measure relatedness between terms in the classification of academic domain, enlarge the number of review candidates , and rank recommendable reviewers according to their expertness. In addition, we construct a researcher network connecting among researchers according to their various relationships like mentor, coauthor, and cooperative research. We use the researcher network to exclude inappropriate reviewers and support fairness of reviewer recommendation process. Our methodology recommending proper reviewers is verified from experts in the field of proposal examination. It propose the proper method for developing a resonable reviewer recommendation system.

7
김용(전북대학교) ; 김문석(전라북도 교육청) ; 김윤범(전북대학교 문헌정보학과) ; 박재홍((주) 유라클) 2009, Vol.26, No.1, pp.81-105 https://doi.org/10.3743/KOSIM.2009.26.1.081
초록보기
초록

본 연구에서는 웹, IPTV 등의 콘텐츠 유통망에서의 개인화 추천서비스를 위하여 이용자의 콘텐츠 이용행위와 콘텐츠의 위치정보를 활용한 추천방법을 제안하고 있다. 추천방법의 성능향상을 위하여 이용자 및 콘텐츠 프로파일 생성방법과 함께, 이용자의 콘텐츠 이용행위를 암묵적 이용자 피드백으로서 학습과정에 적용하여 이용자 선호도를 분석하였다. 학습과정에서의 이용자 선호도 분석을 위하여 협업여과추천방법 및 내용기반추천방법을 적용하였다. 또한 보다 정확한 추천을 위한 최종 콘텐츠 추천을 위하여 웹사이트 상의 콘텐츠에 대한 위치정보를 활용한 추천방법을 제안하고 있다. 이를 통하여 보다 효율적이고 정확한 추천 서비스의 제공이 가능할 수 있다.

Abstract

In this paper, we propose user contents using behavior and location information on contents on various channels, such as web, IPTV, for contents distribution. With methods to build user and contents profiles, contents using behavior as an implicit user feedback was applied into machine learning procedure for updating user profiles and contents preference. In machine learning procedure, contents-based and collaborative filtering methods were used to analyze user's contents preference. This study proposes contents location information on web sites for final recommendation contents as well. Finally, we refer to a generalized recommender system for personalization. With those methods, more effective and accurate recommendation service can be possible.

초록보기
초록

본 연구에서는 도서관과 정보센터에서 전통적으로 제공되어진 SDI 서비스와 함께 일부 기관에서 제공하고 있는 맞춤정보 서비스를 기반으로 한 개인화 정보 서비스 시스템의 기술요소 및 전체 시스템의 구조를 제안하였다. 제안된 개인화 정보 서비스 시스템은 이용자의 개인 프로파일정보를 바탕으로 이용자의 정보탐색행태 등을 추가 입력 값으로 해서 학습과정을 거쳐 이용자에게 가장 적절한 정보를 출력 값으로 제공할 수 있다. 이를 위해 개인화 정보 서비스 시스템에서 가장 중요한 기능을 수행하는 학습시스템과 추천시스템을 구축하는데 필요한 요소에 대해 살펴보았다.

Abstract

With SDI service provided in libraries and information centers traditionally, this paper studies component technologies and structure of system platform in PIS (personalization information service based on the customized information service served currently in some institutions. The PIS system should provide relevant information as an output through the learning system analyzing user information searching behavior as an input value with personal profile information. To do it, this paper studies requirements and algorithms to develop PIS, and proposes learning system and recommendation system as core components in PIS.

9
유소영(한남대학교) ; 이재윤(명지대학교) ; 정은경(이화여자대학교) ; 이보람(이화여자대학교 대학원 문헌정보학과) 2015, Vol.32, No.4, pp.249-272 https://doi.org/10.3743/KOSIM.2015.32.4.249
초록보기
초록

연구성과평가와 연구비 배분에 인용분석을 포함한 계량정보학적 분석방법이 많이 사용되고 있으며, 부적절한 적용 및 해석에 대한 우려와 지적 또한 계속되고 있다. 이에 따라 최근 연구성과평가 지침과 권고안이 학술 커뮤니티와 계량서지학적 연구집단에서 연이어 발표되고 있다. 따라서 이 연구에서는 2015년 발표된 라이덴 선언(Leiden Manifesto)을 중심으로 Thomson Reuters 백서, 프랑스 과학원 권고안, DORA 선언, IEEE 권고안을 비교하고 이를 통해 국내 연구성과평가 환경에의 제안 가능성을 살펴보고자 하였다. 비교분석 결과, 다수의 권고안은 연구의 목적과 연구 주제분야별 특성을 반영하고 다양한 지표를 활용한 다면적 평가를 통해 총체적인 평가를 지향하고 있는 것으로 나타났다. 이러한 결과는 국내 연구성과평가시스템 적용에서 고려해 볼 주요 권고안이라고 할 수 있으며, 추후 이에 대한 이해관계자들의 의견 수렴 등을 통하여 국내 연구성과시스템에의 적용가능성을 보다 심층적으로 살펴볼 필요가 있을 것이다.

Abstract

Inappropriate applications of bibliometric approach and misinterpretation on the analysis in research evaluation have been found and recognized nationally and internationally as the use of the approach has been rapidly adopted in various sectors in research evaluation systems and research funding agencies. The flood of misuse led to several numbers of declarations and statements on appropriate research evaluation, including Leiden Manifesto, DORA, IEEE Statement, etc. The similar recommendations from five different declarations, Leiden Manifest, IEEE Statement, DORA, Institut de France, and Thomson Reuters White paper were reviewed and meta-analyzed in this study and it is revealed that most of them emphasize evaluation on quality in various aspects with multiple indicators. Research evaluation with assessing multiple aspects of individual research based on the understandings of its purpose and pertinent subject area was revealed as being mostly advised in the declarations, and this recommendation can be regarded as being mostly requested in national research evaluation system. For future study, interviews with relevant stakeholders of national research evaluation system in order to explore its application are needed to confirm the findings of this review.

10
백지원(이화여자대학교) ; 정연경(이화여자대학교) 2014, Vol.31, No.1, pp.31-51 https://doi.org/10.3743/KOSIM.2014.31.1.031
초록보기
초록

본 연구의 목적은 국립중앙도서관 주제명표목표의 이용자 접근 및 검색 시스템 기능 개선 방안을 제안하는 것이다. 이를 위하여 첫째, 국내외 주요 주제명표목표의 주제명 접근 및 검색 방식을 분석하여 시사점을 도출하였다. 둘째, 포커스 그룹 인터뷰와 검색 시스템 분석을 통해 주제명 접근, 이용 방식과 절차 등 국립중앙도서관 주제명표목표의 이용 현황 및 검색 시스템의 문제점을 파악하였다. 셋째, IFLA의 국가 서지 주제 접근 지침과 FAST의 적용 사례에 나타난 주제 접근 도구의 발전 방향 및 국내외 사례의 시사점 등을 바탕으로 국립중앙도서관 주제명표목표의 검색 시스템 개선안을 기능, 인터페이스, 질의, 부가 서비스 등 4가지 부문으로 나누어 제안하였다.

Abstract

This study aims to suggest several improvement strategies for the access and retrieval system of National Library of Korea Subject Headings (NLKSH). For this purpose, first of all, the access and retrieval systems in five selected subject headings were examined. Second, focus group interviews and system analysis were conducted to reveal the current condition and suggest the future development strategies. Third, IFLA’s Guidelines for Subject Access in National Bibliographies and FAST application cases were analyzed to suggest implications on the improvement strategies. Upon these analysis, recommendations for improving access and retrieval systems of the NLKSH were proposed in four areas as follows: functionalities, interfaces, queries, and other front-end features.

정보관리학회지