바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: journal classification scheme, 검색결과: 5
초록보기
초록

이 연구는 KCI 기타인문학, 기타사회과학, 사회과학일반 분야(이하 ‘일반 및 기타 분야’로 표기)에 속한 학술지의 다학문성과 학제성을 분석한 후, 이를 바탕으로 일반 및 기타 분야의 학술지 분류에 대한 개선방안을 제안하는 것이 목적이다. 개별 학술지의 다학문성과 학제성은 인용관계에 나타난 학술지 단위 엔트로피와 논문 단위 엔트로피로 각각 측정하였다. 학술지 간 인용관계 분석 결과 KCI 일반 및 기타 분야에는 다학문성과 학제성 측면에서 다양한 학술지가 혼재되어 있는 것으로 나타났다. 일반 및 기타 분야 학술지의 분류를 바로잡기 위해서는 우선 학술연구분야 분류표에 인문학일반 분야를 새로 설정할 필요가 있음을 밝혔다. 나아가서 각 학술지의 다학문성 수준 및 학제성 수준을 고려하여 일반 및 기타 분야 학술지를 재분류하는 방안을 제안하였다.

Abstract

This study analyzed humanities and social science (HSS) journals of KCI to examine the multidisciplinarity and interdisciplinarity in the general and miscellaneous fields (hereinafter referred to as ‘GM fields’), The multidisciplinarity and interdisciplinarity identified in this study will be a foundation to improve classification of KCI journals in GM fields. Each journal’s multidisciplinarity and interdisciplinarity were measured by journal-level entropy and document-level entropy, respectively, in the citation relationships. According to the analysis, GM field journals have wide ranges of multidisciplinarity and interdisciplinarity. To improve classification quality of journals in GM fields, the general humanities should be considered as a new classification class for the multidisciplinary and interdisciplinary journals in the humanities. Furthermore, this study proposes a strategy to reclassify GM field journals of HSS according to their multidisciplinarity and interdisciplinarity.

초록보기
초록

문헌정보학 분야의 국내 학술지 논문으로 구성된 문헌집합을 대상으로 기계학습에 기초한 자동분류의 성능에 영향을 미치는 요소들을 검토하였다. 특히, 「정보관리학회지」에 수록된 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 용어 가중치부여 기법, 학습집합 크기, 분류 알고리즘, 범주 할당 방법 등 주요 요소들의 특성을 다각적인 실험을 통해 살펴보았다. 결과적으로 분류 환경 및 문헌집합의 특성에 따라 각 요소를 적절하게 적용하는 것이 효과적이며, 보다 단순한 모델의 사용으로 상당히 좋은 수준의 성능을 도출할 수 있었다. 또한, 국내 학술지 논문의 분류는 특정 논문에 하나 이상의 범주를 할당하는 복수-범주 분류(multi-label classification)가 실제 환경에 부합한다고 할 수 있다. 따라서 이러한 환경을 고려하여 단순하고 빠른 분류 알고리즘과 소규모의 학습집합을 사용하는 최적의 분류 모델을 제안하였다.

Abstract

This study examined the factors affecting the performance of automatic classification based on machine learning for domestic journal articles in the field of LIS. In particular, In view of the classification performance that assigning automatically the class labels to the articles in 「Journal of the Korean Society for Information Management」, I investigated the characteristics of the key factors(weighting schemes, training set size, classification algorithms, label assigning methods) through the diversified experiments. Consequently, It is effective to apply each element appropriately according to the classification environment and the characteristics of the document set, and a fairly good performance can be obtained by using a simpler model. In addition, the classification of domestic journals can be considered as a multi-label classification that assigns more than one category to a specific article. Therefore, I proposed an optimal classification model using simple and fast classification algorithm and small learning set considering this environment.

3
정동열(이화여자대학교) ; 김성진(인하공업전문대학) 2003, Vol.20, No.1, pp.165-198 https://doi.org/10.3743/KOSIM.2003.20.1.165
초록보기
초록

본 연구는 문헌정보학 분야 연구논문에서 저자들의 이론 활용 정도를 분석하기 위하여 한국문헌정보학회지와 정보관리학회지를 대상으로 지난 30년간 연구된 654편의 논문에 대한 내용분석이 이루어졌다. 주요 연구내용은 연구논문의 연대별 생산성, 세부주제영역별 생산성, 연구에 활용된 이론의 유형과 근원, 개별 이론별 활용도, 세부주제 영역별 활용도, 학회지별 활용도 등에 대한 개념적 연구와 실증적 연구가 수행되었다. 이를 위하여 이론의 개념적 기준 설정과 문헌정보연구의 세부주제영역에 대한 새로운 분류 체계, 특히 이론의 활용성을 평가하기 위한 기준으로 ‘이론 활용 5단계’ 모델을 제시하였다.

Abstract

This study analyzed authorsuse of theory in 654 articles that appeared in two core library and information science journals during last three decades. In order to analyze degree of theory use of LIS, such as, publication productivity, growth and distribution of theory in subfields, name and origin of theory, usability of each theory, subfields and journals, and so on, content analysis of LIS theories was performed through conceptual and empirical study. For the purpose of this study, we suggested a couple of new analytical methods, so called, 'Subfield Classification Scheme' within LIS, and '5 Degrees of Theory Use' model for the first time.

초록보기
초록

이 논문에서는 학술지 인용 데이터와 웹 링크 데이터를 이용하여 8개 과학기술 분야의 학제적 구조를 파악하고 각 학문분야 간 학제성을 비교하였다. 분석 대상이 되는 학술지와 웹 페이지의 주제적 성격을 파악하기 위해 기존의 과학기술 분류체계를 재구성하여 이용하였다. 이 연구에서 학제성은 여러 학문분야 간 학제적 연결의 측면에서 파악하였으며, 학제성의 정도는 연관 학문분야의 수로 측정한 학제적 다양성과 자기인용률에 의해 평가하였다. 분석 결과 학술지 인용 분석에서는 밝혀내지 못한 새로운 학제적 연결을 웹 링크 분석에 의해 파악하였으며, 이를 통해 웹 링크 분석이 학제성을 연구하는 수단으로서 유용함을 알 수 있었다. 또한 인용 분석과 링크 분석에서 모두 자연과학 분야에 비해 공학 분야의 학제성이 대체로 더 높게 나타났다.

Abstract

This study identifies the interdisciplinary structures of 8 scientific disciplines in science and technology using the data from journal citations and web links, and compares the interdisciplinarity among these scientific disciplines. The interdisciplinarity refers to interdisciplinary connections among scientific fields and the degree of interdisciplinarity is measured by the number of associated fields and the rate of self-citation. A re-arranged classification scheme for science and technology was adopted to identify subject categories of journals and web pages. Web link analysis revealed a few additional interdisciplinary connections that were not identified by the journal citation analysis, thus demonstrating that it is useful means of investigating the interdisciplinarity of scientific fields. Besides, in most of the cases the interdisciplinarity of the engineering fields were found greater than that of the fields in natural sciences in both analyses.

초록보기
초록

본 연구는 새로운 분석법으로 떠오르는 처방적 분석 기법을 소개하고, 이를 분류 기반의 시스템에 효율적으로 적용하는 방안을 제시하는 것을 목적으로 한다. 처방적 분석 기법은 분석의 결과를 제시함과 동시에 최적화된 결과가 나오기까지의 과정 및 다른 선택지까지 제공한다. 새로운 개념의 분석 기법을 도입함으로써 문헌 분류를 기반으로 하는 응용 시스템을 더욱 쉽게 최적화하고 효율적으로 운영하는 방안을 제시하였다. 최적화의 과정을 시뮬레이션하기 위해, 대용량의 학술문헌을 수집하고 기준 분류 체계에 따라 자동 분류를 실시하였다. 처방적 분석 개념을 적용하는 과정에서 대용량의 문헌 분류를 위한 동적 자동 분류 기법과 학문 분야의 지적 구조 분석 기법을 동시에 활용하였다. 실험의 결과로 효과적으로 서비스 분류 체계를 수정하고 재적용할 수 있는 몇 가지 최적화 시나리오를 효율적으로 도출할 수 있음을 보여 주었다.

Abstract

This study aims to introduce an emerging prescriptive analytics method and suggest its efficient application to a category-based service system. Prescriptive analytics method provides the whole process of analysis and available alternatives as well as the results of analysis. To simulate the process of optimization, large scale journal articles have been collected and categorized by classification scheme. In the process of applying the concept of prescriptive analytics to a real system, we have fused a dynamic automatic-categorization method for large scale documents and intellectual structure analysis method for scholarly subject fields. The test result shows that some optimized scenarios can be generated efficiently and utilized effectively for reorganizing the classification-based service system.

정보관리학회지