바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

검색어: information use, 검색결과: 2
1
김판준(신라대학교) ; 이재윤(경기대학교) 2007, Vol.24, No.4, pp.285-303 https://doi.org/10.3743/KOSIM.2007.24.4.285
초록보기
초록

본 연구는 연구 영역 분석을 위하여 통제어휘와 비통제어휘를 연계해서 사용하는 새로운 방법을 모색하기 위한 것이다. 동시출현단어분석은 크게 통제어휘와 비통제어휘를 사용하는 경우의 두 가지 유형으로 구분할 수 있는데, 통제어휘를 사용할 경우에는 자료 희귀성 및 색인자 효과가 단점이며, 비통제어휘를 사용할 경우에는 저자의 주관에 따른 단어 선택 및 단어의 중의성이 문제가 된다. 이 연구에서는 양자를 보완할 수 있는 방법으로, 통제어휘인 디스크립터를 비통제어휘인 단어와의 동시출현 정보로 표현하는 디스크립터 프로파일링을 제안하였다. 정보학 분야에 적용해본 결과, 디스크립터 프로파일링은 특정 영역의 최신 동향을 파악하는데 있어 통제어휘와 비통제어휘가 갖는 본질적인 문제점을 어느 정도 보완할 수 있는 것으로 나타났다.

Abstract

This study aims to explore a new technique making complementary linkage between controlled vocabularies and uncontrolled vocabularies for analyzing a research domain. Co-word analysis can be largely divided into two based on the types of vocabulary used: controlled and uncontrolled. In the case of using controlled vocabulary, data sparseness and indexer effect are inherent drawbacks. On the other case, word selection by the author's perspective and word ambiguity. To complement each other, we suggest a descriptor profiling that represents descriptors(controlled vocabulary) as the co-occurrence with words from the text(uncontrolled vocabulary). Applying the profiling to the domain of information science implies that this method can complement each other by reducing the inherent shortcoming of the controlled and uncontrolled vocabulary.

초록보기
초록

문헌간 유사도를 자질로 사용하는 분류기에서 미분류 문헌을 학습에 활용하여 분류 성능을 높이는 방안을 모색해보았다. 자동분류를 위해서 다량의 학습문헌을 수작업으로 확보하는 것은 많은 비용이 들기 때문에 미분류 문헌의 활용은 실용적인 면에서 중요하다. 미분류 문헌을 활용하는 준지도학습 알고리즘은 대부분 수작업으로 분류된 문헌을 학습데이터로 삼아서 미분류 문헌을 분류하는 첫 번째 단계와, 수작업으로 분류된 문헌과 자동으로 분류된 문헌을 모두 학습 데이터로 삼아서 분류기를 학습시키는 두 번째 단계로 구성된다. 이 논문에서는 문헌간 유사도 자질을 적용하는 상황을 고려하여 두 가지 준지도학습 알고리즘을 검토하였다. 이중에서 1단계 준지도학습 방식은 미분류 문헌을 문헌유사도 자질 생성에만 활용하므로 간단하며, 2단계 준지도학습 방식은 미분류 문헌을 문헌유사도 자질 생성과 함께 학습 예제로도 활용하는 알고리즘이다. 지지벡터기계와 나이브베이즈 분류기를 이용한 실험 결과, 두 가지 준지도학습 방식 모두 미분류 문헌을 활용하지 않는 지도학습 방식보다 높은 성능을 보이는 것으로 나타났다. 특히 실행효율을 고려한다면 제안된 1단계 준지도학습 방식이 미분류 문헌을 활용하여 분류 성능을 높일 수 있는 좋은 방안이라는 결론을 얻었다

Abstract

This paper studies the problem of classifying documents with labeled and unlabeled learning data, especially with regards to using document similarity features. The problem of using unlabeled data is practically important because in many information systems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. There are two steps in general semi-supervised learning algorithm. First, it trains a classifier using the available labeled documents, and classifies the unlabeled documents. Then, it trains a new classifier using all the training documents which were labeled either manually or automatically. We suggested two types of semi-supervised learning algorithm with regards to using document similarity features. The one is one step semi-supervised learning which is using unlabeled documents only to generate document similarity features. And the other is two step semi-supervised learning which is using unlabeled documents as learning examples as well as similarity features. Experimental results, obtained using support vector machines and naive Bayes classifier, show that we can get improved performance with small labeled and large unlabeled documents then the performance of supervised learning which uses labeled-only data. When considering the efficiency of a classifier system, the one step semi-supervised learning algorithm which is suggested in this study could be a good solution for improving classification performance with unlabeled documents.

정보관리학회지