바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: co-word analysis, 검색결과: 24
1
박재신(연세대학교) ; 정영미(연세대학교) 2010, Vol.27, No.3, pp.83-102 https://doi.org/10.3743/KOSIM.2010.27.3.083
초록보기
초록

본 연구에서는 지구적 환경문제의 해결 방식으로서 환경과학 분야의 학술활동과 같은 학문적 접근 방식과 환경 NGO 중심의 환경운동과 같은 실천적 접근 방식을 두 가지 주요 흐름이라 보고, 이들 각각의 특성을 계량정보학적 분석을 통해 파악하고 비교하였다. 지난 10년 간 환경과학 분야에서 인용된 저널의 주제범주 간 동시인용 관계를 분석함으로써 이 분야의 지식 구조를 파악하였고, 환경 NGO의 웹 사이트에서 수집된 외부링크 데이터를 이용하여 이들의 관심 분야를 확인하였다. 또한 저널 논문과 NGO 뉴스에서 추출된 핵심어를 이용한 동시출현단어 분석을 통해 하위 주제를 파악하여 이들 간의 주제적 유사성과 상이성을 구체화하였다.

Abstract

This study aims to understand and compare the characteristics of two major approaches to solving global environmental problems-an academic approach including scholarly activities of environmental sciences and a practical approach of environmental movements led by NGOs-by employing informetric analysis methods. Knowledge structure of environmental sciences is depicted through co-citation networks of subject categories assigned to the cited journals in the discipline of environmental sciences for the 10-year period from 2000 to 2009. Furthermore, major interests of environmental NGOs are identified on the basis of external link data collected from web sites of the NGOs. Co-word analyses are also performed using the texts of journal papers in environmental sciences as well as news articles provided by NGO sites. Through the analyses, dominant subject areas of environmental sciences and environmental movements are identified demonstrating similarities and differences between the two approaches.

초록보기
초록

학문과 기술의 발달이 전개되면서 학문 간의 융합이 이루어지고 학제적 성향을 띠는 학문이 더욱 등장하게 되었다. 현재까지 계량정보학적 방법으로 학문 분야의 지적구조를 파악한 연구는 있었지만 학제적인 학문의 특성을 규명하여 지적구조를 분석한 시도는 적었다. 따라서 본 연구에서는 학제성을 띠는 의료정보학(Medical Informatics) 분야의 저널 중 IEEE ENG MED BIOL 저널을 선정하여 저자동시인용 분석과 동시출현단어 분석을 통해 본 저널의 지적구조를 파악하였다. 또한 상위 3개 대표 저널의 저자 및 MeSH Term을 추출하여 종합적으로 비교분석하였다. 이를 통해 의료정보학 분야의 융합된 학문들의 관계를 구조적으로 파악하고 의료정보학의 학문적 성향을 분석했다.

Abstract

Due to the development of science and technology, the convergence of various disciplines has been fostered. Accordingly, interdisciplinary studies have increasingly been expanded by integrating knowledge and methodology from different disciplines. The primary focus of biblimetric methods is on investigating the intellectual structure a field, and analysis of the characterization of interdisciplinary studies is overlooked. In this study, we aim to identify the intellectual structure of the field of medical informatics through author co-citation analysis and co-word analysis by the representative journal “IEEE ENG MED BIOL.” In addition, we examine authors and MeSH Terms of top three representative journals for further analysis of the field. We examine the intellectual structure of the medical informatics field by author and word clusters to identify the network structure of medical informatics disciplines.

3
김판준(신라대학교) ; 이재윤(경기대학교) 2007, Vol.24, No.4, pp.285-303 https://doi.org/10.3743/KOSIM.2007.24.4.285
초록보기
초록

본 연구는 연구 영역 분석을 위하여 통제어휘와 비통제어휘를 연계해서 사용하는 새로운 방법을 모색하기 위한 것이다. 동시출현단어분석은 크게 통제어휘와 비통제어휘를 사용하는 경우의 두 가지 유형으로 구분할 수 있는데, 통제어휘를 사용할 경우에는 자료 희귀성 및 색인자 효과가 단점이며, 비통제어휘를 사용할 경우에는 저자의 주관에 따른 단어 선택 및 단어의 중의성이 문제가 된다. 이 연구에서는 양자를 보완할 수 있는 방법으로, 통제어휘인 디스크립터를 비통제어휘인 단어와의 동시출현 정보로 표현하는 디스크립터 프로파일링을 제안하였다. 정보학 분야에 적용해본 결과, 디스크립터 프로파일링은 특정 영역의 최신 동향을 파악하는데 있어 통제어휘와 비통제어휘가 갖는 본질적인 문제점을 어느 정도 보완할 수 있는 것으로 나타났다.

Abstract

This study aims to explore a new technique making complementary linkage between controlled vocabularies and uncontrolled vocabularies for analyzing a research domain. Co-word analysis can be largely divided into two based on the types of vocabulary used: controlled and uncontrolled. In the case of using controlled vocabulary, data sparseness and indexer effect are inherent drawbacks. On the other case, word selection by the author's perspective and word ambiguity. To complement each other, we suggest a descriptor profiling that represents descriptors(controlled vocabulary) as the co-occurrence with words from the text(uncontrolled vocabulary). Applying the profiling to the domain of information science implies that this method can complement each other by reducing the inherent shortcoming of the controlled and uncontrolled vocabulary.

4
최예진(이화여자대학교 문헌정보학과) ; 정연경(이화여자대학교) 2016, Vol.33, No.3, pp.63-83 https://doi.org/10.3743/KOSIM.2016.33.3.063
초록보기
초록

다양한 매체와 유형으로 생산되는 정보자원에 대한 이용이 높아짐에 따라, 정보자원을 기술하기 위한 정보조직의 도구로서 메타데이터에 대한 중요성이 높아지고 있다. 본 연구에서는 메타데이터 분야의 연구 영역을 파악할 수 있도록 동시출현단어 분석을 사용하여 메타데이터 분야의 지적 구조를 규명하고자 하였다. 이를 위하여 1998년 1월 1일부터 2016년 7월 8일까지 Web of Science 핵심컬렉션에 등재된 저널에 게재된 문헌을 대상으로 ‘metadata’라는 질의어로 Topic 검색을 수행하여, 총 727건의 논문에 대한 서지정보를 수집하였다. 이 중 저자 키워드를 가진 410건의 논문의 저자 키워드로 수집하고, 전처리 과정을 거쳐 저자 키워드 총 1,137개를 추출하여 최종적으로 빈도수 6회 이상의 키워드 37개를 분석대상으로 선정하였다. 이후 메타데이터 분야의 지적구조 규명을 위해 첫째, 네트워크 분석을 통하여 2개 영역 9개 군집을 도출하였으며, 메타데이터 분야 키워드들의 지적 관계를 시각화하고, 중심성 분석을 통한 전역 중심 키워드와 지역 중심이 높은 키워드를 제시하였다. 둘째, 군집분석을 실시하여 형성된 6개의 군집을 다차원축적지도상에 표시하였으며, 각 키워드들 간의 상관관계에 따른 지적구조를 제시하였다. 이러한 연구의 결과는 메타데이터 분야의 지적구조를 시각적으로 파악할 수 있게 하며, 향후 메타데이터 관련 교육과 연구의 방향성 모색에 유용하게 사용될 수 있을 것이다.

Abstract

As the usage of information resources produced in various media and forms has been increased, the importance of metadata as a tool of information organization to describe the information resources becomes increasingly crucial. The purposes of this study are to analyze and to demonstrate the intellectual structure in the field of metadata through co-word analysis. The data set was collected from the journals which were registered in the Core collection of Web of Science citation database during the period from January 1, 1998 to July 8, 2016. Among them, the bibliographic data from 727 journals was collected using Topic category search with the query word ‘metadata’. From 727 journal articles, 410 journals with author keywords were selected and after data preprocessing, 1,137 author keywords were extracted. Finally, a total of 37 final keywords which had more than 6 frequency were selected for analysis. In order to demonstrate the intellectual structure of metadata field, network analysis was conducted. As a result, 2 domains and 9 clusters were derived, and intellectual relations among keywords from metadata field were visualized, and proposed keywords with high global centrality and local centrality. Six clusters from cluster analysis were shown in the map of multidimensional scaling, and the knowledge structure was proposed based on the correlations among each keywords. The results of this study are expected to help to understand the intellectual structure of metadata field through visualization and to guide directions in new approaches of metadata related studies.

초록보기
초록

최근 문헌정보학의 관련 분야로 주목받고 있는 데이터과학은 오랫동안 문헌정보학에서 해오던 정보의 수집, 저장, 조직, 분석, 활용 등의 활동을 데이터에 적용하여 그 가치를 이해하려는 학문이며, 통계학과 컴퓨터공학 등 다른 학문분야와의 연계가 필요한 분야이다. 이러한 데이터과학 분야의 연구 영역을 파악하기 위하여 동시출현단어 분석을 사용하여 Web of Science 핵심컬렉션에 수록된 문헌들 중 데이터과학 관련 자료들을 수집하고, 그 주제범주를 활용하여 네트워크분석을 실시하였다. 총 667건의 자료에 대한 159개의 주제범주를 기술분석하여 데이터과학 관련 연구가 많이 이루어지고 있는 학문분야를 조사하였고, 네트워크분석을 통해 데이터과학 분야 연구영역의 지적구조를 시각적으로 파악하였다. 분석결과, 데이터과학 분야의 연구들은 2개 영역 9개 군집으로 구분되었으며, 주제범주의 용어들 중 중심성이 높은 용어들을 통해 각 군집의 대표적인 주제들을 선정하였다. 연구의 결과는 데이터과학 분야의 연구들에 대한 지적구조를 파악하는데 도움이 될 수 있고, 문헌정보학과의 연계융합전공으로서의 데이터과학 교과과정 개발에 방향성을 제시할 수도 있을 것이다.

Abstract

Data Science is emerging as a closely related field of study to Library and Information Science (LIS), and as an interdisciplinary subject combining LIS, statistics and computer science in an attempt to understand the value of data by applying what LIS has been doing for collecting, storing, organizing, analyzing, and utilizing information. To investigate which subject fields other than LIS, statistics, and computer science are related to Data Science, this study retrieved 667 materials from Web of Science Core Collection, extracted terms representing Web of Science Categories, examined subject fields that are studying Data Science using descriptive analysis, analyzed the intellectual structure of the field by co-word analysis and network analysis, and visualized the results as a Pathfinder network with clustering created with the PNNC clustering algorithm. The result of this study might help to understand the intellectual structure of the Data Science field, and may be helpful to give an idea for developing relatively new curriculum.

초록보기
초록

최근 이용자들이 정보를 공동생산하고 소비하는 웹기반 서비스들이 활발해지면서 이용자가 정보를 이용한 기록이나 이용자가 습득한 정보를 활용하여 생산한 다양한 부가 정보들이 다시 이용자에게 제공되고 있다. 또한 쌍방향으로 이용자들이 소통할 수 있는 정보채널이 다양해짐으로써 공통된 관심사를 가진 이용자의 정보소비 경험을 공유할 수 있는 방법이 활발하게 모색되고 있다. 이 연구에서는 동시출현정보 분석기법과 자아중심 네트워크 분석 기법을 적용하여 IMDB 서비스의 기존 이용자들이 자신이 보고 싶거나 좋아하는 영화를 선별하여 만들어 놓은 영화리스트에 나타난 정보를 토대로 특정 영화를 좋아하는 이용자가 선호할 만한 다른 영화를 찾아낼 수 있도록 연관영화정보를 다각적으로 표현하였다. 한 영화를 기준으로 연관 영화, 감독, 장르로 분석을 한 결과 영화의 테마나 주인공성향과 같은 다양한 자질로도 연관영화가 연결되었고 감독의 경우 영화내용보다는 감독의 인지도에 영향을 받는 것으로 나타났다. 또한 영화는 주제의 복합성이 큰 것으로 나타나 장르가 연관영화정보를 제공하기에 적합하지 않은 것으로 분석되었다.

Abstract

Recently, many information services allow users to collaborate to produce and use information. Sharing information is also important for users who have similar taste or interest. As various channels are available for users to share their experiences and knowledge, users’ data have also been accumulated within the information services. This study collected movie lists made by users of IMDB service. Co-word analysis and ego-centered network analysis were adapted to discover relevant information for users who chose a specific movie. Three factors of movies including movie title, director and genre were used to present related movie information. Movie title is an effective feature to present related movies with various aspects such as theme or characters and the popularity of directors affects on identifying related directors. Genre is not useful to find related movies due to the complexity in the topic of a movie.

7
강범일(연세대학교) ; 이재윤(명지대학교) 2014, Vol.31, No.3, pp.293-311 https://doi.org/10.3743/KOSIM.2014.31.3.293
초록보기
초록

이 연구에서는 계량정보학적 기법을 사용하여 국내 트위터 관련 연구의 동향을 분석하고자 하였다. 이를 위해 KCI에서 검색된 2009년부터 2014년 4월까지의 트위터 관련 논문 539편에서 제목, 초록, 키워드를 추출하여 분석 자료로 삼았다. 프로파일링 기법을 이용해 트위터 관련 연구가 수행된 학문 분야와 저널을 분석하였고, 동시출현단어 분석을 통해 트위터 관련 연구의 세부 주제 영역을 파악하였다. 그 결과, 국내 트위터 관련 연구는 53개 학문분야에서 다양하게 다루어지고 있으며 핵심 분야는 신문방송학, 경영학, 컴퓨터학 분야로 나타났다. 세부 주제로는 선거를 비롯한 정치 관련 이슈가 가장 많이 다루어졌으며, 기업/구매 관련 이슈도 활발히 연구되었음을 확인할 수 있었다.

Abstract

This study explored the research trends on Twitter in Korea by informetric methods. All 539 articles on Twitter published from 2009 to the April of 2014 were obtained from the KCI. Only article titles, abstracts, and keywords by authors were used in analysis. Academic journals in many different disciplines where Twitter articles were produced were analysed by profiling, and then, the subject areas of researches on Twitter were analysed by co-word analysis. The results of this study showed that Twitter-related papers were published in as many as 53 disciplines with journalism, business administration, and computer science to be core fields. It was also found that the core subject areas are political issues and business.

8
최형욱(이화여자대학교 일반대학원 문헌정보학과) ; 정은경(이화여자대학교) 2017, Vol.34, No.3, pp.109-124 https://doi.org/10.3743/KOSIM.2017.34.3.109
초록보기
초록

여러 학문 분야에서 데이터의 공유와 재이용에 관한 관심이 증가하고 있다. 실제로 다른 연구자의 데이터를 다시 연구에 사용하고 인용을 부여하는 관행이 서서히 자리를 잡아가고 있다. 이러한 변화를 반영하여 톰슨로이터는 Data Citation Index(DCI)라는 데이터인용 색인 데이터베이스 서비스를 2012년부터 제공하기 시작하였다. DCI는 모든 학문의 전 영역에서 데이터의 인용 현황을 저널의 논문과 유사하게 집계한다. 본 연구에서는 데이터인용이 활발한 사회학 분야의 인용된 연구데이터를 분석하여 해당 분야의 특성과 지적구조를 규명하고자 하였다. 이를 위해 논문 인용을 기반으로 한 사회학 분야의 지적구조와 비교하였으며, 사회학 분야의 연구데이터의 특성과 고유한 지적구조를 살펴보고자 하였다. 분석을 위한 데이터는 두 종류로 수집하였다. 첫째는 DCI에서 ‘Sociology’로 주제 검색을 수행하여 총 8,365건의 인용된 데이터를 수집하였다. 둘째로, 논문 인용 분석과의 비교를 위해서 Web of Science에서 ‘Sociology’로 주제 검색을 수행하여 총 12,132건의 데이터를 수집하였다. 이 두 데이터를 활용하여 저자키워드 동시출현단어 분석을 수행한 결과, 데이터를 기반으로 한 사회학 분야는 2영역 15군집으로 구성된 반면, 논문을 기반으로 한 사회학 분야는 3영역 17군집으로 나타났다. 내용적인 특성을 살펴보면, 전통적으로 사회학의 지적구조를 나타낸다고 볼 수 있는 논문 기반 사회학과 달리 사회학 분야의 연구데이터는 의학 분야와의 활발한 접목을 찾아볼 수 있으며, 그 중에서도 공중보건과 심리학이 중심 영역인 것으로 나타났다.

Abstract

Through a wide variety of disciplines, practices on data access and re-use have been increased recently. In fact, there has been an emerging phenomenon that researchers tend to use the data sets produced by other researchers and give scholarly credit as citation. With respect to this practice, in 2012, Thomson Reuters launched Data Citation Index (DCI). With the DCI, citation to research data published by researchers are collected and analyzed in a similar way for citation to journal articles. The purpose of this study is to identify the characteristics and intellectual structure of sociology field based on research data, which is one of actively data-citing fields. To accomplish this purpose, two data sets were collected and analyzed. First, from DCI, a total of 8,365 data were collected in the field of sociology. Second, a total of 12,132 data were collected from Web of Science with a topic search with ‘Sociology’. As a result of the co-word analysis of author provided-keywords for both data sets, the intellectual structure of research data-based sociology was composed of two areas and 15 clusters and that of article-based sociology was composed with three areas and 17 clusters. More importantly, medical science area was found to be actively studied in research data-based sociology and public health and psychology are identified to be central areas from data citation.

9
이지원(대구가톨릭대학교 도서관학과 부교수) 2019, Vol.36, No.4, pp.279-300 https://doi.org/10.3743/kosim.pub.36.4.279001
초록보기
초록

본 연구는 동시출현단어 분석을 사용하여 2000년대와 2010년대 목록 분야 연구동향 및 지적구조 분석을 수행하고, 두 시기의 차이점을 비교하였다. 목록 분야는 독자적인 연구 영역을 확고히 구축하고 있었으며, 2000년대와 2010년대 연구동향 및 지적구조에 많은 차이점이 발견되었다. 첫째, 논문 수에 있어서는 2000년대에 비해 2010년대에는 연간 평균 4.2편이 감소하였으나, 저자키워드 수는 큰 차이는 나지 않았다. 연대별 키워드 출현빈도는 22.2%의 키워드만이 두 시기에 모두 3회 이상 나타났으며, 77.8%의 키워드들은 한 시기에만 3회 이상 나타났다. 둘째, 지적구조에 있어서 살펴보면, 2000년대에는 3단계 군집을 보여주어 2단계 군집으로 표현된 2010년대에 비해 보다 복잡한 형태의 네트워크를 형성하였다. 셋째, 각 군집의 특성 변화를 살펴본 결과, 일부 변화가 적은 연구주제들이 있기는 하지만, 많은 연구주제들이 더욱 활발히 진행되거나 세분되었으며, 감소하기도 하는 변화가 있었다. 이러한 연구의 결과는 목록 분야의 시대적 흐름과 함께 지적구조를 시각적으로 파악할 수 있게 하며, 미래의 모습을 예측하여 관련 교육과 연구를 준비할 수 있다는 점에서 의의가 있다.

Abstract

This study aims to analyze and to demonstrate the research trends and intellectual structure in the field of catalog in the 2000s and 2010s through co-word analysis. The field of catalog had firmly established its own research area and Many differences were found in research trends and intellectual structures in the 2000s and 2010s. First, the average number of articles decreased by 4.2 in the 2010s compared to the 2000s, but the number of author keywords was not significantly different. Only 22.2% of keywords appeared more than three times in both periods, and 77.8% of keywords appeared more than three times in one period. Second, in terms of intellectual structure, the 2000s, represented by three-level clusters, formed a more complex network than the 2010s, represented by two-level clusters. Third, as a result of examining the changes in the characteristics of each cluster, there were some research topics with few changes, but many research topics were more actively progressed or subdivided, and decreased. The results of this study are meaningful in that they can visually grasp the intellectual structure along with the trend of the age of catalogue, and can prepare for related education and research by predicting the future.

10
허영수(연세대학교 언어정보학협동과정) ; 박지홍(연세대학교) 2021, Vol.38, No.2, pp.65-86 https://doi.org/10.3743/KOSIM.2021.38.2.065
초록보기
초록

외국어 교육 분야에서 학습자는 교육의 한 축을 이루는 중요한 부분이지만 한국어교육의 경우 교육 내용, 교수 방법, 교재 등에 비해 학습자 연구는 미진한 면이 있었다. 이에 학습자 연구, 그중에서도 학습전략 연구가 어떻게 이루어져 왔는지를 분석하고 더 나은 교육을 위해 연구가 필요한 부분을 도출해 보는 것은 의미가 있다. 본 연구에서는 한국어교육 분야에서 학습전략 연구의 현황을 분석하기 위해 학술지와 학위논문의 제목에 대해 동시출현단어 분석을 진행하였다. 연구 결과, 한국어 학습자의 학습전략 관련 가장 많은 연구가 이루어진 분야는 ‘읽기’이고, 대상은 ‘중국인 유학생’과 ‘결혼이민자’였다. 또한, 연구 주제에 대한 서브그룹 분석 결과를 보면 주요 서브그룹이 네 개가 나타나는데 ‘학문 목적 읽기’ 관련 그룹, ‘요청, 거절, 대화 등 화행’ 관련 그룹, ‘쓰기’ 관련 그룹, ‘어휘, 듣기’ 관련 그룹이다. 이를 통해 한국어 학습자의 학습전략과 관련해 연구자들의 주요 관심 분야가 ‘읽기, 화행’ 등임을 알 수 있으며, 연구 대상과 연구 분야가 부분적으로 편중되어 있는 상황이므로 다양한 분야와 대상으로 연구를 확대할 필요가 있음을 알 수 있다.

Abstract

In the foreign language education, learners are an important part of education, however in the Korean language education, the study of learners was insufficient compared to the contents of education, teaching methods and textbooks. Therefore, it is meaningful to analyze how learner research, especially learning strategy research, has been conducted and derive areas that need research for better education. In this study, co-word analysis was conducted on the titles of academic journals and dissertations in order to analyze the learning strategy research in Korean language education. I found it is about “reading” that the most studies related to Korean language learners’ learning strategies were conducted and those studies’ subjects mostly were ‘Chinese international students’ and ‘marriage-immigrants’. In addition, the results of the subgroup analysis on the research topic show four major subgroups: a group related to ‘reading for academic purposes’, a group related to ‘request, rejection, conversation, etc.’, a group related to ‘writing’, and a group related to ‘vocabulary, listening’. This shows that the researchers’ major interests in studying Korean learner’s strategies are “reading” and “speaking” and their studies have been concentrated in the specific areas. Therefore, it is necessary for researchers to study various functions and subjects in Korean language learner’s learning strategies.

정보관리학회지