바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: citation analysis, 검색결과: 74
초록보기
초록

이 연구에서는 White가 제안한 자아 중심 인용 분석을 응용하여 연구 주제에 대한 다층적인 분석을 가능하게 해주는 자아 중심 주제 인용 분석 기법을 제안하였다. 시험적으로 폭소노미에 대한 연구문헌을 Web of Science 데이터베이스로부터 검색한 후 이에 대한 주제 인용 분석을 수행해보았다. 폭소노미 주제에 대한 자아 중심 인용 분석은 자아 문헌 집단 분석, 주제 인용 정체성 분석, 주제 인용 이미지 분석의 세 단계로 나뉘어 수행되었다. 분석 결과 이 연구에서 제안된 자아 중심 주제 인용 분석을 통해서 폭소노미 연구의 내부 지적 구조와 외부 지적 구조를 함께 파악하는 것이 가능함이 확인되었다.

Abstract

This research aims to present the ego-centered topic citation analysis, which is a new application of White’s ego-centered citation analysis, for analyzing multilayered knowledge structure of a subject domain. An experimental topic citation analysis was carried out on the folksonomy research documents retrieved from Web of Science. Ego-centered topic citation analyses on folksonomy research domain were conducted in three stages: ego-documents set analysis, topic citation identity analysis, and topic citation image analysis. The results showed that the ego-centered topic citation analysis suggested in this study was successfully performed to illustrate the inner and the outer knowledge structures of folksonomy research domain.

2
유재복(한국원자력연구원) ; 정영미(연세대학교) 2010, Vol.27, No.4, pp.239-258 https://doi.org/10.3743/KOSIM.2010.27.4.239
초록보기
초록

이 연구에서는 특허의 인용에 영향을 미치는 주요 변수들을 토대로 특허의 피인용횟수를 예측하기 위한 모형을 제시하였다. 이를 위해 미국특허를 대상으로 5개 주제분야에 걸쳐 특허의 피인용횟수와 일정 수준 이상의 상관관계, 즉 5% 이상의 설명력을 갖는 것으로 밝혀진 페이지 수, 청구항 수, 참고문헌 평균 피인용횟수, 서지결합도, 문헌간유사도 등 5개 변수들을 토대로 다중회귀분석을 실시하였다. 연구결과에 따르면, 제시된 5개 주제분야의 특허인용 예측모형의 설명력은 주제분야에 따라 58.3%~89.6%로 나타났으며, 예측변수로 사용된 5개의 독립변수 중 특허 피인용횟수에 가장 영향력이 높은 변수는 ‘문헌간유사도’로 나타났다. 또한 이 연구에서 추정된 주제분야별 예측모형을 토대로 산출한 특허 피인용횟수에 대한 예측값과 실제값을 비교한 결과 이들 예측모형은 5개 주제분야에서 모두 적합한 것으로 나타났다.

Abstract

The purpose of this study is to develop a prediction model of patent citation counts based on major factors which affect patent citation. To this end, we performed multiple regression analysis between the patent citation counts and five explanatory variables such as the number of pages, the number of claims, the reference-average-citation rate, the strength of bibliographic coupling, and the document similarity proved as having 5% or more standardized variances(r2) with patent citation counts, with a test dataset of U.S. patents in five subject fields. As a result, our prediction models showed 58.3% to 89.6% predictability depending on subject fields and revealed the document similarity has the highest impact on citation counts among the five predictive variables in all the subject fields. The result of comparison between the predicted citation counts and the actual ones confirmed the usefulness of the citation prediction models built for each subject field.

3
유재복(한국원자력연구원) ; 정영미(연세대학교) 2010, Vol.27, No.1, pp.103-118 https://doi.org/10.3743/KOSIM.2010.27.1.103
초록보기
초록

최근 특허기술의 가치평가가 크게 강조되고 있으며, 그 평가의 수단으로 특허의 피인용횟수가 매우 유용한 척도 중의 하나로 받아들여지고 있다. 그에 따라 이 연구에서는 특허의 피인용횟수와 이에 영향을 미칠만한 형태적․기술적․개념적 요인의 17개 변수들 간의 상관관계를 미국특허를 대상으로 5개 주제분야에 걸쳐 분석하였다. 분석결과 특허의 피인용횟수와 일정 수준 이상의 상관관계, 즉 5% 이상의 설명력을 갖는 변수는 페이지 수, 청구항 수, 참고문헌 평균 피인용횟수, 기술분야 특허증감율, 서지결합도, 동시인용도 및 문헌간유사도 등 7개로 나타났다. 또한 이들 변수에 대한 분산분석 결과 7개 변수 모두 전반적으로 대부분의 주제분야 간에 있어서 평균값의 차이가 있는 것으로 나타났다.

Abstract

Recently, the valuation of patented technology has been greatly emphasized, and patent citation has been accepted as a very useful index of this technology. In this study, we performed correlation analyses between the patent citation counts and 17 explanatory variables of morphological, technological, and conceptual factors with a test dataset of U.S. patents in five subject fields. Seven variables having 5% or more standardized variances(r2) with patent citation counts were identified; number of pages, number of claims, reference-average-citation rate, patent increase/decrease rate, strength of bibliographic coupling, co-citation counts and document similarity. The result of the ANOVA test shows that the mean values of these variables vary among most subject fields.

초록보기
초록

이 연구에서는 자관의 학술지 상호인용 및 동시인용 분석을 통하여 단순 피인용빈도 이상의 학술지 인용 패턴 분석을 시도 하였다. 이 연구를 통해 학술지의 중요도 파악에 있어서 자관 인용 네트워크의 구조적 분석이 인용빈도 이상의 자관 인용 패턴에 대한 설명을 하고 있는지와, Web of Science에서 제공하는 JIF 이외의 일반적 인용 지수 서비스들을 고려해야 할 필요성이 있는지를 살펴보았다. Y대학교 생명시스템대학 생명공학과 전·현직 교수진이 2006년과 2007년에 발표한 학술논문의 인용 네트워크 분석 및 Web of Science 이외의 일반적 인용 지수들간의 관계를 분석한 결과는 다음과 같다. 첫째, 자관의 상호인용 네트워크를 통해 자관의 연구 분야를 확인할 수 있었다. 둘째, 자관의 동시인용 네트워크 지수들은 자관 인용 네트워크의 구조적 속성을 반영하는 인용 패턴의 설명이 가능하며 이는 피인용빈도와 유사하면서도 추가적인 설명력을 가지는 것을 확인하였다. 셋째, 일반적 인용지수로는 JIF 외에도 합산지향지수, h-index와 같은 다양한 일반적 인용 지수들의 설명력이 다양하므로 이를 이용하여 다각적으로 고려하는 것이 필요한 것으로 파악되었다. 또한 학술지 평가에서 인용 색인 데이터베이스의 수록범위보다는 지수의 유형에 따른 설명력 차이가 크다는 것을 확인하였다. 이와 같은 자관의 인용 네트워크 분석은 정보서비스의 여러 분야에서 유용하게 사용될 수 있을 것으로 기대된다.

Abstract

In this study, we testify that network structural attributes of a citation network can explain other aspects of journal citation behaviors and the importances of journals. And we also testify various citation impact indicators of journals including JIF and h-index to verify the difference among them especially focused on their ability to explain an institution's local features of citation behaviors. An institutional citation network is derived using the articles published in 2006-2007 by biotechnology faculties of Y University. And various journal citation impact indicators including JIF, SJR, h-index, EigenFactor, JII are gathered from different service sites such as Web of Science, SCImago, EigenFactor.com, Journal-Ranking.com. As a results, we can explain the institution's 5 research domains with inter-citation network. And we find that the co-citation network structural features can show explanations on the patterns of institutional journal citation behavior different from the simple cited frequency of the institution or patterns based on general citation indicators. Also We find that journal ranks with various citation indicators have differences and it implies that total-based indices, average-based indices, and hybrid index(h-index) explain different aspects of journal citation pattern. We also reveal that the coverage of citation DB doesn't be a matter in the journal ranking. Analyzing the citation networks derived from an institution's research outputs can be a useful and effective method in developing several library services.

초록보기
초록

이 연구의 목적은 인문학분야를 대상으로 인용DB간 구축 정보를 비교하고 차이가 있는 경우 그 원인과 문제점을 분석하여 구축 정보의 정확성을 향상시킬 수 있는 방안을 제시하는데 있다. 이를 위해 인용정보를 구성하는 주요 항목 중의 하나인 피인용횟수를 기준으로 네이버와 KCI에서 국내학술논문을 비교하였다. 조사결과, KCI가 네이버보다 좀 더 정확한 인용정보를 제공하고 있었지만 그 차이는 크지 않았다. 각 인용DB간 차이의 원인은 수록범위의 불완전성, 서지정보의 오류, 참고문헌 구축의 불완전성, 링크와 관련된 오류 등으로 조사되었다. 두 인용DB 모두 개선의 여지가 남아있으며, 양자를 상호보완적으로 활용한다면 인문학 분야에서 더욱 완전한 인용정보를 파악할 수 있을 것이다.

Abstract

The purpose of this study was to identify differences between KCI and Naver Scholar as citation analysis tools. Four subcategories in the humanities category were selected as the subject of study. The recall of Naver Scholar was 64%(2,227 times) and the KCI's was 77%(2,665 times). There were some differences in the results at the individual article level or the subcategory level, but the gaps were not significant. Therefore, researchers who analyze citations are urged to use both databases because neither of them are complete, but supplementary to each other.

6
강대신(한국과학기술연구원) ; 문성빈(연세대학교) 2009, Vol.26, No.3, pp.377-394 https://doi.org/10.3743/KOSIM.2009.26.3.377
초록보기
초록

본 연구는 기존의 연구성과 분석의 한계를 극복하고 영향력이나 파급효과 등 질적 중심의 연구성과 분석을 위해 텍스트 마이닝, 인용 분석 등을 활용한 새로운 계량정보학적 분석지표를 제안하였다. 즉, 논문품질지수, 인용 영향력지수, 지식확산지수, 국제협력연구지수, 우수논문 생산지수 등 새로운 연구성과 분석지표를 제안하여 질적인 측면을 중심으로 한 연구성과 분석이 가능하도록 하였다. 그리고 제안된 지표를 활용하여 사례분석을 수행하여 그 가능성을 확인하였다.

Abstract

There are some limitations in the existing bibliometric methods to satisfy the various requests of the interest parties including researchers, managers, policy makers to identify 1) which research group or researcher is the key player, and the overall trends of the particular technological sub-fields, 2) which research groups, institutions or countries mainly use their research outputs, 3) what are the spin-offs from research outputs to some scientific and technological fields, 4) in which levels they are when comparing their quantitative and qualitative research outputs to those of other competitive institutions. It is essential to develop new informetric indicators and methodologies in order to satisfy stakeholder's various demands and to strengthen qualitative analysis in measuring research performance. This study suggested informetric indicators such as article quality index, citation impact index, international cooperation index, excellent article production index and methodologies including citation analysis, text mining.

7
유종덕(경기대학교) ; 최은주(경기대학교) 2011, Vol.28, No.1, pp.123-144 https://doi.org/10.3743/KOSIM.2011.28.1.123
초록보기
초록

본 연구는 학문의 지적 구조를 분석하는 새로운 분석기법인 저자프로파일링분석과 전통적인 분석기법인 저자동시인용분석을 비교하여 분석함으로써 국내 연구환경에 맞는 지적 구조 분석 방법을 제안하는 데 목적을 두고 있다. 이를 위하여 본 연구에서는 인용색인을 이용하지 않고 학문의 지적 구조를 분석할 수 있는 텍스트마이닝을 이용한 저자프로파일링분석을 통하여 새로운 지적 구조 방법의 유용성을 확인하고자 하였다. 분석대상 학술지는 대한건축학회 논문집 - 계획계를 대상으로 하였다.

Abstract

This study compared Author Profiling Analysis(APA) to Author Co-Citation Analysis (ACA). The former is a new analytic technique on the intellectual structure of a science whereas the latter is a traditional analytic technique. The purpose of this study was to propose appropriate methods to analyze intellectual structure of a science in the Korean research environment. In order to achieve the goal, this study adopted APA using Text Mining for analysis on the intellectual structure of a science rather than relying on citation index in order to determine a potential utility of the new analytic technique that can identify the intellectual structure.

8
민기은(진성고등학교) ; 정영미(연세대학교) 2007, Vol.24, No.4, pp.73-96 https://doi.org/10.3743/KOSIM.2007.24.4.073
초록보기
초록

이 연구에서는 웹과 학술지를 통한 학술 커뮤니케이션의 특성을 각각 분석하고, 웹상에서의 학술 커뮤니케이션 패턴이 학문 분야에 따라 어떤 차이를 보이는지 비교하였다. 경제학과 컴퓨터공학정보시스템 분야에서 키워드를 추출하여 이와 관련된 학술적 웹페이지와 학술지 논문을 수집하였고, 이를 학술적 웹페이지의 특성, 웹페이지 동시링크와 학술지 논문 동시인용 데이터의 다차원척도(MDS) 분석, 시간의 흐름에 따른 학술 활동의 변화 등 세 가지 측면에서 분석하였다. 분석 결과, 웹과 학술지를 통한 학술 커뮤니케이션에는 공통점과 차이점이 나타났으며, 이런 현상은 두 학문 분야에서 모두 확인되었다. 그리고 웹을 통한 학술 커뮤니케이션의 경우 같은 학문 분야 내의 세부 주제에 따라서 고유한 특성이 나타나는 것을 볼 수 있었다.

Abstract

In this study, the characteristics of scholarly communication through the Web and scientific journals are explored, and scholarly communication patterns in two scientific disciplines are compared to reveal the difference. Economics and Computer Science-Information Systems are selected as two disciplines to be analyzed. In the data collection process, 10 keywords are extracted from a database for each subject field, and scholarly Web pages and journal articles related to these keywords are collected and analyzed. Our investigation includes the characteristics of scholarly Web pages, Multi-Dimensional Scaling (MDS) analysis of co-linked Web pages as well as co-cited journal articles, and changes in the scholarly communication activities occurring on the Web and in scientific journals respectively over time. We found certain differences as well as common features in scholarly communication patterns between the Web and scientific journals for both fields of Economics and Computer Science. We also found that scholarly communication occurring on the Web displays unique features for each subtopic within the same field of study.

9
곽선영(이화여자대학교) ; 정은경(이화여자대학교) 2012, Vol.29, No.1, pp.115-134 https://doi.org/10.3743/KOSIM.2012.29.1.115
초록보기
초록

전통적인 저자동시인용분석은 인용색인 데이터베이스가 색인하는 제 1저자만을 대상으로 하기 때문에 제1저자 이외의 저자의 기여도가 제외된다는 한계를 지니고 있다. 본 연구의 목적은 경제학 분야를 대상으로 하여 복수저자기반의 저자동시인용분석을 활용하여 해당 학문분야의 지적구조를 제시하고자 한다. 이를 위하여 네 가지 실험집단을 구성하였다. (1) 인용된 문헌의 제 1저자만을 고려한 저자동시인용분석, (2) 문헌당 총합 제한 없이 복수저자에게 동일한 인용빈도 부여한 저자동시인용분석, (3) 문헌당 총 합을 제한하여 인용빈도를 부여한 저자동시인용분석, (4) 저자기입 순서를 고려하여 인용빈도를 부여한 저자동시인용분석. 본 연구의 결과는 크게 제 1저자만 고려한 방식과 복수저자를 모두 고려한 방식에 따라 군집형성에 있어서 차이를 보였다. 또한 복수저자의 인용빈도를 구하는 방식에 따라서 군집의 소속이 달라지는 변화를 찾아볼 수 있다. 이러한 결과는 공동저작이 증가하는 학문적 추세에 비추어서 학문의 지적구조를 밝히기 위해서는 복수저자가 고려된 저자동시인용분석이 중요하다는 점을 시사한다.

Abstract

The author co-citation analysis is generally based on the frequency of the first author because most citation databases include only the first author in the bibliographic information. In this sense, the purpose of this study is to provide a better knowledge structure by utilizing the multiple authorship of author co-citation analysis. To achieve the purpose of this study, four different data sets are prepared: (1) counting the first author, (2) counting all the author without limiting the total frequency, (3) counting all the author with limiting the total frequency, and (4) counting adjusted frequencies based on the order of author subscription. The findings of this study show that there are clear differences between the knowledge structure counting all the author and the one counting only the first author. In addition, depending on the different methods, there are subtle changes of cluster members for authors.

초록보기
초록

이 연구에서는 연구자의 연구 이력을 분석하기 위해서 White(2000)가 제안한 인용 정체성과 Hellsten 등(2007)이 제안한 자기 인용 네트워크의 두 가지 최신 기법을 비교해보았다. 국내 대표적인 정보학자인 정영미의 연구 성과물을 대상으로 실험적인 분석을 수행해본 결과 두 기법에서 구분한 연구 시기가 동일하게 나뉘었으며 주요 연구 주제도 유사하게 파악되었다. 그러나 인용 정체성 지도에서는 주제영역별로 영향받은 주요 저자를 파악할 수 있는 반면에 자기 인용 네트워크에서는 시기별 핵심 문헌과 선도 문헌이 식별되었다. 따라서 이 두 가지 기법을 상호보완적으로 사용할 때 연구자의 연구 이력에 대해서 풍부한 정보를 획득할 수 있다는 결론을 얻었다.

Abstract

This paper compares two recent methods for exploring a scientist's research history: citation identity and self-citation network. The former is proposed by White(2000), while the latter is suggested by Hellsten et al.(2007). An experimental citation analysis was carried out on the research output of Young Mee Chung, a renouned Korean information scientist. The result shows that the two methods divided the research period into two sub-periods in the same way. They also identified the major research themes very similarly. In the analysis of each method's performance in depth, the two methods revealed different functions to understand a researcher's history. Citation identity was useful to identify authors who have affected Chung's research in terms of research topics. whereas, self-citation network was successful to identify the core papers and leading papers of the research sub-periods. This study indicates the combination of two methods can provide rich information on a scientist's research history.

정보관리학회지