바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: University & Institute collaboration network analysis, 검색결과: 4
1
김동훈(성균관대학교 문헌정보학과 박사과정) ; 오찬희(성균관대학교 문헌정보학과 석사과정) ; 주영준(성균관대학교 문헌정보학과 조교수) 2021, Vol.38, No.3, pp.23-39 https://doi.org/10.3743/KOSIM.2021.38.3.023
초록보기
초록

본 연구에서는 국내 블록체인 연구의 전반적인 동향 및 시간에 따른 주제를 파악하기 위해 대학 및 기관 협력 네트워크 분석, 키워드 동시출현 네트워크 분석, 다이나믹 토픽모델링 기법을 활용한 시계열 주제 분석을 실시하였다. 대학 및 기관 협력 네트워크 분석 결과, 숭실대학교, 순천향대학교, 고려대학교, 한국과학기술원 등이 블록체인 연구의 주요 대학으로 나타났으며 대학 이외의 기관으로는 국방부, 한국철도기술연구원, 삼일회계법인, 한국전자통신연구원 등이 주요 연구기관으로 나타났다. 키워드 동시출현 네트워크 분석 결과, 가상자산(암호화폐, 비트코인, 이더리움, 가상화폐), 블록체인 기술(분산원장, 분산원장기술), 금융(스마트계약), 정보보안(보안, 프라이버시, 개인정보) 등에 대한 키워드들이 주요하게 나타났으며, 모든 네트워크 중심성 지표에서 스마트계약이 가장 높은 수치를 나타내어 주요한 주제임을 확인할 수 있었다. 마지막으로 시계열 주제분석 결과, 블록체인기술, 블록체인생태계, 블록체인 적용분야1(무역, 온라인투표, 부동산), 블록체인 적용분야2(식품, 관광, 유통, 미디어), 블록체인 적용분야3(경제, 금융) 등 다섯 개의 주요 주제들을 도출하였으며, 각 주제별 대표 키워드들의 비율변화를 통해 주제별 변화를 관찰할 수 있었다. 본 연구는 기존의 국내 블록체인 연구동향 연구들과 크게 세 가지 관점(데이터, 방법론, 해석)에서 차이점을 나타내고 있다. 1) 최근 2년 사이 급증한 블록체인 연구를 포함하였고, 2) 대학 및 기관 네트워크 분석과 시계열 주제분석이라는 새로운 분석기법 및 연구방법을 활용하였으며, 3) 이를 통해 블록체인 연구를 주도하는 대학 및 기관을 식별하고 국내 블록체인 연구 트렌드를 파악하였다. 끝으로, 연구결과가 블록체인 관련 연구 협력 및 정책 수립과 관련 기술 개발 계획에 활용될 수 있다는 점에서 실질적인 함의를 시사한다.

Abstract

This study aims to explore research trends in Blockchain studies in South Korea using dynamic topic modeling and network analysis. To achieve this goal, we conducted the university & institute collaboration network analysis, the keyword co-occurrence network analysis, and times series topic analysis using dynamic topic modeling. Through the university & institute collaboration network analysis, we found major universities such as Soongsil University, Soonchunhyang University, Korea University, Korea Advanced Institute of Science and Technology (KAIST) and major institutes such as Ministry of National Defense, Korea Railroad Research Institute, Samil PricewaterhouseCoopers, Electronics and Telecommunications Research Institute that led collaborative research. Next, through the analysis of the keyword co-occurrence network, we found major research keywords including virtual assets (Cryptocurrency, Bitcoin, Ethereum, Virtual currency), blockchain technology (Distributed ledger, Distributed ledger technology), finance (Smart contract), and information security (Security, privacy, Personal information). Smart contracts showed the highest scores in all network centrality measures showing its importance in the field. Finally, through the time series topic analysis, we identified five major topics including blockchain technology, blockchain ecosystem, blockchain application 1 (trade, online voting, real estate), blockchain application 2 (food, tourism, distribution, media), and blockchain application 3 (economy, finance). Changes of topics were also investigated by exploring proportions of representative keywords for each topic. The study is the first of its kind to attempt to conduct university & institute collaboration networks analysis and dynamic topic modeling-based times series topic analysis for exploring research trends in Blockchain studies in South Korea. Our results can be used by government agencies, universities, and research institutes to develop effective strategies of promoting university & institutes collaboration and interdisciplinary research in the field.

2
송혜지(연세대학교 대학원 문헌정보학과) ; 박지홍(연세대학교 문헌정보학과) 2020, Vol.37, No.2, pp.71-93 https://doi.org/10.3743/KOSIM.2020.37.2.071
초록보기
초록

오늘날 다양한 질병의 출현과 빠르게 변화하는 의료환경에 보다 효과적으로 대처하기 위해 대학병원 내에서 여러 진료과들이 협업진료를 수행하고 있다. 이러한 협업진료는 매우 중요하며 의료 현장에서 이미 보편화되어 있다. 그럼에도 불구하고, 이에 대한 연구, 특히 진료과들이 어떻게 협업을 하고 있는지에 대한 연구는 전무하다. 따라서 본 연구는 대학병원 내의 진료과 간의 협업진료 관계를 탐색하여 진료협업 네트워크 특성들이 연도별 및 계절별로 어떻게 달라지는지를 고찰하는 것에 목적이 있다. 본 연구는 국내 A대학교 대학병원에서 이루어진 29개 진료과 사이의 협업 진료를 연도별 및 계절별로 나누어 29개 진료과 협업 네트워크를 분석하였다. 협업진료의 요청 및 피요청에 따라 방향네트워크를 구성하였으며, 매개중심성, 아이겐벡터중심성, 근접중심성 분석, 에고 네트워크 분석 및 팩션분석과 더불어 추후 인터뷰도 실시하였다. 본 연구는 최초의 진료과 간의 협업 네트워크 분석을 수행하였으며, 의료기관 내에서의 동선을 고려한 진료과의 위치 및 공간 구성에 새로운 통찰력을 제시할 것으로 기대된다.

Abstract

Today, in order to more effectively cope with the emergence of various diseases and the rapidly-changing medical environment, several medical departments are conducting treatment collaborations within the university hospital. This collaborative care is very important and is already common in the medical field. Nevertheless, there is no research on this, especially how the departments are collaborating. Therefore, the purpose of this study is to investigate how the characteristics of the treatment collaboration networks vary by year and season by exploring the relationship between the medical departments within the university hospital. This study analyzed the collaboration networks of 29 medical departments of ‘A’ university in Korea by dividing the collaborative care by year and season. Directed networks were constructed in response to departments requesting and departments requested for collaborative care. Betweenness centrality, eigenvector centrality, closeness centrality analysis, ego network analysis, and faction analysis were also conducted. This study performed the first treatment collaboration network analysis among medical departments, and is expected to present new insights into the location and spatial composition of medical departments in consideration of the knowledge transfer paths within medical institutions.

초록보기
초록

Abstract

Since information scientists have begun trying to quantify significant research trends in scientific publications, ‘-metrics’ research such as ‘bibliometrics’, ‘scientometrics’, ‘informetrics’, ‘webometrics’, and ‘citation analysis’ have been identified as crucial areas of information science. To illustrate the dynamic research activities in these areas, this study investigated the major contributors of ‘-metrics’ research for the last decade at three levels: nations, institutions, and documents. ‘-metrics’ literature of this study was obtained from the Science Citation Index for the years 2001-2011. In this analysis, we used Pathfinder network, PNNC algorithm, PageRank and several indicators based on h-index. In terms of international collaborations, USA and England were identified as major countries. At the institutional level, Katholieke University, Leuven and the University of Amsterdam in Europe and Indiana University and the Office of Naval Research in the USA have led co-research projects in informetrics areas. At the document level, Hirsch’s h-index paper and Ingwersen’s web impact factor paper were identified as the most influential work by two methods: PageRank and single paper h-index.

4
이선희(한국과학기술정보연구원) ; 김지영(한국과학기술정보연구원) 2020, Vol.37, No.2, pp.285-310 https://doi.org/10.3743/KOSIM.2020.37.2.285
초록보기
초록

본 논문은 고에너지 물리학(HEP) 분야 국내 연구자들의 학술 커뮤니케이션의 특성을 파악하고자 성공적인 오픈액세스 모델로 평가되는 SCOAP3 학술지를 분석하였다. HEP 분야 국내 연구자들의 협업과 연구 활동 내용을 파악하기 위한 연구방법으로 통계를 활용한 양적 분석과 저자 소속기관과 학술지에 대한 네트워크 분석을 수행하였다. 연구 결과, 국내 연구자가 참여한 10종의 SCOAP3 학술지 가운데 국내 저자 참여 논문 비율은 전체 논문 가운데 8.0%였다. 논문 한 편당 공저자 수가 천 명이 넘는 논문 비율이 전체 논문의 28.7%나 되었다. 이 분석 결과들은 HEP 글로벌 네트워크에서 국내 연구자들이 적극적으로 협업하고 있다는 것을 증명하였다. 소속기관을 중심으로 협력 관계를 파악하고자 네트워크 분석을 실시한 결과, 협력 네트워크를 3개의 클러스터로 구분할 수 있었다. 즉 S대학 중심의 클러스터, CERN과 협력 인프라를 제공하는 K연구기관 중심의 클러스터, 그리고 I연구원 중심의 클러스터로 나누어졌다. 연구기관과 학술지의 네트워크 분석을 통하여 학술지 중 JHEP, PRD, PLB가 참여도가 높은 학술지였으며 대학들과 연구원들도 협력하여 오픈 액세스 논문 저작에 참여하고 있음을 알 수 있었다. 본 연구 결과는 SCOAP3 컨소시엄에 참여하는 도서관들이 HEP 분야 연구자를 이해하고 이들을 위한 최적의 연구 정보환경을 구축하기 위한 기초자료로 활용될 수 있다.

Abstract

This paper analyzed SCOAP3 journals, which have been evaluated as successful open access models, to understand the characteristics of scholarly communication among domestic researchers in the field of high energy physics (HEP). As research methods, a quantitative analysis using statistics and a network analysis of authors’ affiliated institutions and academic journals were conducted to understand collaboration and research activities of domestic researchers in the HEP field. The results of the study revealed that, among the 10 SCOAP3 journals in which Korean researchers participated, the proportion of articles in which Korean authors participated was 8.0% of the total. The proportion of papers with more than 1,000 co-authors per paper was 28.7% of the total. The results of this analysis proved that Korean researchers were actively collaborating in the HEP global network. From the results of the network analysis to understand the cooperative relationship centered on the affiliated organization, the cooperative network could be divided into three clusters: a cluster centered on S universities, a cluster centered on K research institutes that provided researchers a cooperative infrastructure with CERN, and a cluster centered on I research institute. Through the network analysis for research institutes and journals, it was found that JHEP, PRD, and PLB among academic journals were highly participating journals, and universities and researchers were also participating in the writing of open access papers. The results of this study can be used as a basic resource for understanding researchers and building a research information environment in libraries.

정보관리학회지