바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: Time series topic analysis, 검색결과: 9
1
김동훈(성균관대학교 문헌정보학과 박사과정) ; 오찬희(성균관대학교 문헌정보학과 석사과정) ; 주영준(성균관대학교 문헌정보학과 조교수) 2021, Vol.38, No.3, pp.23-39 https://doi.org/10.3743/KOSIM.2021.38.3.023
초록보기
초록

본 연구에서는 국내 블록체인 연구의 전반적인 동향 및 시간에 따른 주제를 파악하기 위해 대학 및 기관 협력 네트워크 분석, 키워드 동시출현 네트워크 분석, 다이나믹 토픽모델링 기법을 활용한 시계열 주제 분석을 실시하였다. 대학 및 기관 협력 네트워크 분석 결과, 숭실대학교, 순천향대학교, 고려대학교, 한국과학기술원 등이 블록체인 연구의 주요 대학으로 나타났으며 대학 이외의 기관으로는 국방부, 한국철도기술연구원, 삼일회계법인, 한국전자통신연구원 등이 주요 연구기관으로 나타났다. 키워드 동시출현 네트워크 분석 결과, 가상자산(암호화폐, 비트코인, 이더리움, 가상화폐), 블록체인 기술(분산원장, 분산원장기술), 금융(스마트계약), 정보보안(보안, 프라이버시, 개인정보) 등에 대한 키워드들이 주요하게 나타났으며, 모든 네트워크 중심성 지표에서 스마트계약이 가장 높은 수치를 나타내어 주요한 주제임을 확인할 수 있었다. 마지막으로 시계열 주제분석 결과, 블록체인기술, 블록체인생태계, 블록체인 적용분야1(무역, 온라인투표, 부동산), 블록체인 적용분야2(식품, 관광, 유통, 미디어), 블록체인 적용분야3(경제, 금융) 등 다섯 개의 주요 주제들을 도출하였으며, 각 주제별 대표 키워드들의 비율변화를 통해 주제별 변화를 관찰할 수 있었다. 본 연구는 기존의 국내 블록체인 연구동향 연구들과 크게 세 가지 관점(데이터, 방법론, 해석)에서 차이점을 나타내고 있다. 1) 최근 2년 사이 급증한 블록체인 연구를 포함하였고, 2) 대학 및 기관 네트워크 분석과 시계열 주제분석이라는 새로운 분석기법 및 연구방법을 활용하였으며, 3) 이를 통해 블록체인 연구를 주도하는 대학 및 기관을 식별하고 국내 블록체인 연구 트렌드를 파악하였다. 끝으로, 연구결과가 블록체인 관련 연구 협력 및 정책 수립과 관련 기술 개발 계획에 활용될 수 있다는 점에서 실질적인 함의를 시사한다.

Abstract

This study aims to explore research trends in Blockchain studies in South Korea using dynamic topic modeling and network analysis. To achieve this goal, we conducted the university & institute collaboration network analysis, the keyword co-occurrence network analysis, and times series topic analysis using dynamic topic modeling. Through the university & institute collaboration network analysis, we found major universities such as Soongsil University, Soonchunhyang University, Korea University, Korea Advanced Institute of Science and Technology (KAIST) and major institutes such as Ministry of National Defense, Korea Railroad Research Institute, Samil PricewaterhouseCoopers, Electronics and Telecommunications Research Institute that led collaborative research. Next, through the analysis of the keyword co-occurrence network, we found major research keywords including virtual assets (Cryptocurrency, Bitcoin, Ethereum, Virtual currency), blockchain technology (Distributed ledger, Distributed ledger technology), finance (Smart contract), and information security (Security, privacy, Personal information). Smart contracts showed the highest scores in all network centrality measures showing its importance in the field. Finally, through the time series topic analysis, we identified five major topics including blockchain technology, blockchain ecosystem, blockchain application 1 (trade, online voting, real estate), blockchain application 2 (food, tourism, distribution, media), and blockchain application 3 (economy, finance). Changes of topics were also investigated by exploring proportions of representative keywords for each topic. The study is the first of its kind to attempt to conduct university & institute collaboration networks analysis and dynamic topic modeling-based times series topic analysis for exploring research trends in Blockchain studies in South Korea. Our results can be used by government agencies, universities, and research institutes to develop effective strategies of promoting university & institutes collaboration and interdisciplinary research in the field.

2
진설아(연세대학교) ; 허고은(연세대학교) ; 정유경(연세대학교) ; 송민(연세대학교) 2013, Vol.30, No.1, pp.285-302 https://doi.org/10.3743/KOSIM.2013.30.1.285
초록보기
초록

본 연구는 높은 접근성과 간결성으로 인해 방대한 양의 텍스트를 생산하는 트위터 데이터를 분석하여 토픽의 변화 시점 및 패턴을 파악하였다. 먼저 특정 상품명에 관한 키워드를 추출한 후, 동시출현단어분석(Co-word Analysis)을 이용하여 노드와 에지를 통해 토픽과 관련 키워드를 직관적으로 파악 가능한 네트워크로 표현하였다. 이후 네트워크 분석 결과를 검증하기 위해 출현빈도 기반의 시계열 분석과 LDA 토픽 모델링을 실시하였다. 또한 트위터 상의 토픽 변화와 언론 기사 검색결과를 비교한 결과, 트위터는 언론 뉴스에 즉각적으로 반응하며 부정적 이슈를 빠르게 확산시키는 것을 확인하였다. 이를 통해 기업은 대중의 부정적 의견을 신속하게 파악하고 이에 대한 즉각적인 의사결정 및 대응을 위한 도구로 본 연구방법을 활용할 수 있을 것으로 기대된다.

Abstract

This study identified topic shifts and patterns over time by analyzing an enormous amount of Twitter data whose characteristics are high accessibility and briefness. First, we extracted keywords for a certain product and used them for representing the topic network allows for intuitive understanding of keywords associated with topics by nodes and edges by co-word analysis. We conducted temporal analysis of term co-occurrence as well as topic modeling to examine the results of network analysis. In addition, the results of comparing topic shifts on Twitter with the corresponding retrieval results from newspapers confirm that Twitter makes immediate responses to news media and spreads the negative issues out quickly. Our findings may suggest that companies utilize the proposed technique to identify public’s negative opinions as quickly as possible and to apply for the timely decision making and effective responses to their customers.

3
김영수(숭실대학교) ; 고종남(숭실대학교) ; 도만승(숭실대학교) 2011, Vol.28, No.3, pp.295-312 https://doi.org/10.3743/KOSIM.2011.28.3.295
초록보기
초록

본 연구는 지적구조분석의 동시단어분석(co-word Analysis)방법을 ‘기업가정신’의 연구에 접목하여 지난 50여 년 간의 ‘기업가정신’과 관련한 국내 연구를 단계별로 분석하였다. 동시단어분석 방법은 연구주제 간의 정보를 시각화하고 이차원 평면에 주제들을 배치하여 연구의 전체적인 동향과 향후 연구 주제를 분석하는 정량적 분석방법으로, 연구 결과 크게 4가지 단계의 연구 경로의 방향성이 도출되었다. 분석에 따르면, 태동기 연구단계(3사분면)에서 연구가 시작되고, 독자적 연구단계(2사분면)의 연구 주제는 연구로서의 독자적인 분야로 정착되는 단계이며, 시대적 상황을 반영하는 연구의 주제들이 포함되어 있다. 성장기 연구단계(1사분면)는 연구주제에 가장 밀접한 관계에 있는 연구주제들이 배치되어 있으며, 성숙기(4사분면)의 연구주제들이 연구의 중심에 위치하는 것을 알 수 있었다.

Abstract

This study conducted time-series analysis on domestic studies related to entrepreneurship for more than last 50 years by integrating the co-word analysis method of intellectual structure analysis into the study of entrepreneurship. The co-word analysis method is a quantitative analysis method to analyze the overall trend of the study and further study topics by visualizing the information between study topics and arranging the topics on two-dimensional plane and the study result showed largely four phases and the direction of the study path. According to the analysis, the study is started at embryonic study phase(third quadrant), the study topic of independent study phase(second quadrant) is a phase to be a settled independent area as a study and the topics of the study include topics of the study reflecting the situation of the times. At growing study phase(first quadrant) study topics which are closely related to the study topic are arranged, and the topics, the center of the study, are positioned at the study topics of maturity phase(4th quadrant).

4
서은경(한성대학교) ; 유소영(한남대학교) 2013, Vol.30, No.4, pp.215-239 https://doi.org/10.3743/KOSIM.2013.30.4.215
초록보기
초록

Abstract

Even though the overall scholarly community has recognized a dramatic growth and changes in the Information Science research in Korea over the last few decades, there are still only few studies that have identified the changes in terms of long-term and dynamic point of view. We have analyzed 1,007 IS-research articles from leading Korean journals in KCI (Korea Citation Index), published between 2000 and 2011. To discern the trendline of changes in research interests over time, we conducted a time-series analysis by developing grounded subject scheme from the article set and checking the growth rate of the number of published articles and title keywords. A comparative analysis was also conducted by constructing and comparing co-word maps over time to discover visible changes in research topics over this 12-year period of the IS-research in Korea. As a result, we identified some developments and transformations in major subject areas and knowledge structure of the IS-research in Korea over time. The major trend we discovered is that IS-studies over the 12-year period evolved from system-oriented research to library-application research. The changes are especially observed in knowledge management, Web-based system evaluation, and information retrieval areas. When compared to the results of other studies, the result of our study may serve as an evidence of the localization of Korean IS-studies in the first decade of the 21st century.

초록보기
초록

본 연구는 우리나라 대표적인 정보학분야 학회지인 『정보관리학회지』에 25년 동안에 발표된 학술논문을 대상으로 동향분석을 시도하여 각 시기별 우리나라 정보학분야의 학문적 구조와 그 변화를 파악하였다. 이를 위하여 먼저 25년을 1984-1994, 1995-2002, 2003-2009로 나눈 다음, 각 기간별 『정보관리학회지』에 실린 학술논문의 주제를 분석한 후 각 논문의 주제분포, 주제영역별 논문의 증감, 주제영역별 연도 분포를 살펴보았다. 또한 논문의 표제어를 이용하여 기간별 정보학의 지적 구조를 생성하였고 세 개의 지적 구조를 비교하여 정보학 연구의 변화를 분석하였다. 그 결과 『정보관리학회지』 연구의 주요 대주제 영역은 ‘정보서비스’, ‘정보조직’ 그리고 ‘정보시스템’이며 소주제 영역은 도서관서비스, 이용자연구, 자동문헌처리, 도서관통합시스템, 시소러스/온톨로지, 디지털도서관인 것으로 나타났다. 또한 표제어의 지적 구조를 분석한 결과, 정보학의 핵심영역은 여전히 정보검색이지만 각종 도서관이나 시스템에 활용된 정보기술 기법이나 서비스 평가에 대한 연구가 점점 늘어나고 이에 대한 주제영역이 확장되고 있음을 알 수 있었다.

Abstract

The aims of this study were to provide a global overview of research trends in information science and to trace its changes in the main research topics over time using trends analysis. The study examined the topics of research articles published in Journal of Korean Society for Information Management between 1984 and 2009. Rather than taking a single snapshot of a given point in time, this study attempted to present a series of such pictures in order to identify trends over time. The fairly arbitrary decision was taken to divide the period under consideration into three ‘publication windows’: 1984-1994, 1995-2002, 2003-2009. The study revealed that the most productive areas were ‘Information Service’, followed by ‘Information Organization’, and ‘Information System’. The most productive sub-areas were ‘Library Service’, ‘User Study’, ‘Automatic Document Analysis’, ‘ILS’, ‘Thesaurus/Ontology’, and ‘Digital Library’. From the comparisons of intellectual structures of title keywords, the key research area in the field of Information Science was ‘Information Retrieval’. The studies of IT applications and service system evaluation have been expanded.

초록보기
초록

본 논문에서는 온라인 뉴스 기사에서 자동으로 추출된 키워드 집합을 활용하여 특정 시점에서의 세부 주제별 토픽을 추출하고 정형화하는 새로운 방법론을 제시한다. 이를 위해서, 우선 다량의 텍스트 집합에 존재하는 개별 단어들의 중요도를 측정할 수 있는 복수의 통계적 가중치 모델들에 대한 비교 실험을 통해 TF-IDF 모델을 선정하였고 이를 활용하여 주요 키워드 집합을 추출하였다. 또한 추출된 키워드들 간의 의미적 연관성을 효과적으로 계산하기 위해서 별도로 수집된 약 1,000,000건 규모의 뉴스 기사를 활용하여 단어 임베딩 벡터 집합을 구성하였다. 추출된 개별 키워드들은 임베딩 벡터 형태로 수치화되고 K-평균 알고리즘을 통해 클러스터링 된다. 최종적으로 도출된 각각의 키워드 군집에 대한 정성적인 심층 분석 결과, 대부분의 군집들이 레이블을 쉽게 부여할 수 있을 정도로 충분한 의미적 집중성을 가진 토픽들로 평가되었다.

Abstract

In this paper, we propose a new methodology for extracting and formalizing subjective topics at a specific time using a set of keywords extracted automatically from online news articles. To do this, we first extracted a set of keywords by applying TF-IDF methods selected by a series of comparative experiments on various statistical weighting schemes that can measure the importance of individual words in a large set of texts. In order to effectively calculate the semantic relation between extracted keywords, a set of word embedding vectors was constructed by using about 1,000,000 news articles collected separately. Individual keywords extracted were quantified in the form of numerical vectors and clustered by K-means algorithm. As a result of qualitative in-depth analysis of each keyword cluster finally obtained, we witnessed that most of the clusters were evaluated as appropriate topics with sufficient semantic concentration for us to easily assign labels to them.

초록보기
초록

이 연구에서는 1999년 1월부터 2018년 6월 현재까지 약 20년 간의 기록관리를 주제로 한 뉴스 빅데이터 4,680 건을 ‘빅카인즈’에서 추출하여, 이를 대상으로 우리나라 언론의 기록관리 주제에 대해 시계열 기반으로 보도 특성을 분석하고자 하였다. 먼저, 기록관리에 대한 언론 보도량의 차이를 살펴보기 위해 시기별, 주제별, 언론사 유형별 보도량을 분석하였다. 또한 기록관리 주제에 대한 언론 보도 내용의 차이에 대한 특성을 분석하기 위해 단어빈도 기반 내용 분석과 언어 네트워크 분석을 수행하여 언론 보도 내용의 시기별, 주제별, 언론사 유형별 차이를 분석하였다. 분석 결과, 기록관리 분야 뉴스 보도는 보도량과 보도 내용에 있어 시기별, 주제별, 언론사별로 차이가 있는 것으로 나타났다. 뉴스 보도량은 2007년 대통령기록물관리법이 제정된 이후부터 증가하기 시작하여 2013년에 가장 많은 뉴스가 보도된 것으로 나타났으며, 정치와 사회 주제를 중심으로 중앙지와 경제지가 가장 많은 양의 뉴스를 보도한 것으로 나타났다. 또한 뉴스 보도 내용의 분석 결과, 기록관리가 도입된 처음 10년 동안은 기록관리의 현장 적용과 확산 과정에서 발생하는 이슈들을 중심으로 뉴스 주제가 형성되다가, 대통령기록물관리법 제정 이후로 기록관리가 정치적, 사회적 이슈의 주요 요인이 되면서 정치, 사회 분야의 뉴스가 많이 보도된 것으로 나타났다.

Abstract

The purpose of this study is to analyze the characteristics of Korean media on the topic of archives & records management based on time-series analysis. In this study, from January, 1999 to June, 2018, 4,680 news articles on archives & records management topics were extracted from BigKinds. In order to examine the characteristics of the media coverage on the archives & records management topic, this study was analyzed to the difference of the press coverage by period, subject, and type of the media. In addition, this study was conducted word-frequency based content analysis and semantic network analysis to investigate the content characteristics of media on the subject. Based on these results, this study was analyzed to the differences of media coverage by period, subject, and type of media. As a result, the news in the field of records management showed that there was a difference in the amount of news coverage and news contents by period, subject, and type of media. The amount of news coverage began to increase after the Presidential Records Management Act was enacted in 2007, and the largest amount of news was reported in 2013. Daily newspapers and financial newspapers reported the largest amount of news. As a result of analyzing news reports, during the first 10 years after 1999, news topics were formed around the issues arising from the application and diffusion process of the concept of archives & records management. However, since the enactment of the Presidential Records Management Act, archives & records management has become a major factor in political and social issues, and a large amount of political and social news has been reported.

8
최형욱(이화여자대학교 일반대학원 문헌정보학과) ; 최예진(이화여자대학교 일반대학원 문헌정보학과) ; 남소연(이화여자대학교 일반대학원 문헌정보학과) 2018, Vol.35, No.2, pp.89-114 https://doi.org/10.3743/KOSIM.2018.35.2.089
초록보기
초록

학문 분야의 연구 동향 변화에 대한 연구는 해당 분야의 세부 연구주제와 구조에 대한 파악뿐만 아니라 시간 흐름에 따른 변화 모습을 관찰할 수 있는 방법이다. 이에 본 연구에서는 국내 문헌정보학 분야의 연구 동향을 살펴보기 위하여 2003년부터 2017년까지 한국학술지인용색인(KCI)에 등재된 문헌정보학 분야 학술지 중 인용지수가 가장 높은 3종에 개제된 논문의 한국어 저자키워드를 대상으로 동시출현단어 분석을 수행하였다. 시계열 분석을 위해 15년의 연구 기간을 5년 단위로 누적하여 2003년~2007년, 2003년~2012년, 2003년~2017년으로 구분하였고, 기간별로 출현빈도 10회 이상의 저자키워드를 선정하여 분석하고 이를 시각화하였다. 분석 결과, 2003년~2007년 기간의 지적구조는 총 25개의 키워드로 구성된 8개의 영역이 확인되었으며, 2003년~2012년 기간의 지적구조에서는 총 76개의 키워드로 구성된 3영역 17 군집이 확인되었다. 또한, 2003년~2017년 기간의 지적구조는 총 132개의 키워드로 구성된 6영역 32군집으로 나타났다. 누적 기간별 종합 분석 결과, 한국의 문헌정보학 분야는 지난 15년간 기간별로 새로운 키워드가 포괄적으로 추가되었으며, 세부 주제 역시 세분화 되어 점차 세분화되고 확장되고 있음을 확인하였다.

Abstract

Research on changes in research trends in academic disciplines is a method that enables observation of not only the detailed research subject and structure of the field but also the state of change in the flow of time. Therefore, in this study, in order to observe the changes of research trend in library and information science field in Korea, co-word analysis was conducted with Korean author keywords from three types of journals which were listed in the Korea Citation Index(KCI) and have top citation impact factor were selected. For the time series analysis, the 15-year research period was accumulated in 5-years units, and divided into 2003~2007, 2003~2012, and 2003~2017. The keywords which limited to the frequency of appearance 10 or more, respectively, were analyzed and visualized. As a result of the analysis, during the period from 2003 to 2007, the intellectual structure composed with 25 keywords and 8 areas was confirmed, and during the period from 2003 to 2012, the structure composed by 3 areas 17 sub-areas with 76 keywords was confirmed. Also, the intellectual structure during the period from 2003 to 2017 was crowded into 6 areas 32 consisting of a total of 132 keywords. As a result of comprehensive period analysis, in the field of library and information science in Korea, over the past 15 years, new keywords have been added for each period, and detailed topics have also been subdivided and gradually segmented and expanded.

9
한종엽(한국해양과학기술원) 2015, Vol.32, No.1, pp.23-41 https://doi.org/10.3743/KOSIM.2015.32.1.023
초록보기
초록

이 연구는 국제학술지에 나타난 ‘동해’ 관련 연구에서 ‘동해’ 표기유형별 특성을 계량적으로 분석한 것이다. 이 때 동해표기 유형은 ‘동해 단독’, ‘일본해 단독’, ‘병행표기’로 구분하였다. 분석을 위해 Web of Science DB에서 총 4,192편을 대상으로, 표기유형별 시계열 변화, 저자 소속국가별 표기유형, 연구주제의 차이, 피인용도, 연구협력 및 공저 네트워크를 분석하였다. 그 결과 ‘동해’ 연구에서 ‘일본해 단독 표기’의 비율이 가장 많은 것으로 나타났고, 1990년대 이후 ‘동해 단독 표기’과 ‘병기’의 비율이 지속적으로 상승하고 있었다. 또한 ‘동해’ 연구의 핵심국가는 ‘일본’, ‘러시아’, ‘한국’, ‘미국’, ‘중국’ 5개국이며, ‘일본해 단독 표기’의 경우 ‘일본’을 중심으로 ‘미국’, ‘러시아’, ‘중국’과 공동연구가 활발히 이루어지며, ‘동해 단독 표기’와 ‘병기’는 ‘한국’ 연구자를 중심으로 ‘미국’, ‘일본’과의 연구의 비율이 높았다. 공저 네트워크는 ‘일본해 단독 표기’의 경우 하나의 “거대 구성집단”(Giant Component)을 형성하여 이(異) 집단 간의 협업이 활발히 이루어지고 있으나, ‘동해 단독 표기’의 경우 소속기관을 중심으로 소규모의 연구그룹이 분산된 것으로 나타났다.

Abstract

This study worked on the qualitative analysis about nomenclature East Sea by the record type in researches related to East Sea shown in the scientific journals. Here in this study, the way of marking is classified as three: ‘sole notation of East Sea’, ‘sole notation of Sea of Japan’, and ‘simultaneous notation of both’. Based on a total of 4,192 selections from Web of Science DB, the analysis was followed up for change in time series by the notation type, notation type according to the nation that authors belong to, difference in research topic, impact factor, collaboration in research, and co-authorship network. The result turned out in this work that the sole notation of Sea of Japan accounted for the largest portion. It also showed that the rates of sole notation of East Sea and simultaneous notation have kept increasing continuously since the 1990s. Hub nations regarding the research of East Sea is five including Japan, Russia, Korea, USA, and China. In the case of sole notation of Sea of Japan, active collaboration studies are performed in USA, Russia, and China with a focus in Japan. In the case of sole notation of East Sea and simultaneous use, the research rate is relatively high in USA and Japan with a focus in Korea. As to the co-authorship network in the sole notation of Sea of Japan, sort of a “giant component” among different groups has been set up and through which the collaborative works are actively underway. However, it was found that the research of sole notation of East Sea is dispersed into small groups on the base of relevant individual institution.

정보관리학회지