바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

검색어: 탈중심화, 검색결과: 11
초록보기
초록

네트워크 분석이 확산되면서 매개중심성이나 연결정도중심성과 같은 다양한 중심성 지수가 개발되어 활용되고 있으나, 가중 네트워크에서 지역중심성을 측정할 수 있는 지수로는 최근접이웃중심성 이외에는 거의 알려져 있지 않다. 이 연구에서는 가중 네트워크를 위한 일반화된 지역중심성 지수인 이웃중심성 지수를 새롭게 제안한다. 이웃중심성 지수는 파라미터 α를 사용하여 이진 네트워크를 위한 연결정도중심성 지수와 가중 네트워크를 위한 최근접이웃중심성 지수를 일반화한 것이다. 6가지 실제 네트워크 데이터를 대상으로 하여 제안된 지수의 특징과 적정 파라미터 값을 살펴보는 실험을 수행하고 결과를 보고하였다.

Abstract

While there are several measures for node centralities, such as betweenness and degree, few centrality measures for local centralities in weighted networks have been suggested. This study developed a generalized centrality measure for calculating local centralities in weighted networks. Neighbor centrality, which was suggested in this study, is the generalization of the degree centrality for binary networks and the nearest neighbor centrality for weighted networks with the parameter α. The characteristics of suggested measure and the proper value of parameter α are investigated with 6 real network datasets and the results are reported.

초록보기
초록

이 연구에서는 공개된 가중 네트워크 분석용 소프트웨어인 Opsahl의 tnet과 이재윤의 WNET에서 지원하는 가중 네트워크 중심성 지수를 비교 분석해보았다. tnet은 가중 연결정도중심성, 가중 근접중심성, 가중 매개중심성을 지원하고, WNET은 최근접이웃중심성, 평균연관성, 평균프로파일연관성, 삼각매개중심성을 지원한다. 가상 데이터를 대상으로 한 분석에서 tnet의 중심성 지수는 링크 가중치의 선형 변화에 민감한 반면 WNET의 중심성 지수는 선형 변화에 영향을 받지 않았다. 실제 네트워크 6종을 대상으로 가중 네트워크 중심성을 측정하고 결과를 비교하여 두 소프트웨어의 가중 네트워크 중심성 지수들의 특징을 파악하고 중심성 지수 간 관계를 살펴보았다.

Abstract

This study compared and analyzed weighted network centrality measures supported by Opsahl’s tnet and Lee’s WNET, which are free softwares for weighted network analysis. Three node centrality measures including weighted degree, weighted closeness, and weighted betweenness are supported by tnet, and four node centrality measures including nearest neighbor centrality, mean association, mean profile association, triangle betweenness centrality are supported by WNET. An experimental analysis carried out on artificial network data showed tnet’s high sensitiveness on linear transformations of link weights, however, WNET’s centrality measures were insensitive to linear transformations. Seven centrality measures from both tools, tnet and WNET, were calculated on six real network datasets. The results showed the characteristics of weighted network centrality measures of tnet and WNET, and the relationships between them were also discussed.

초록보기
초록

이 연구의 목적은 공동연구 네트워크에서 연구자의 영향력과 입지를 분석하는데 사용되는 중심성 지수들의 특징에 대해서 고찰하는 것이다. 전통적인 이진 네트워크 중심성 지수로는 연결정도중심성, 매개중심성, 근접중심성, 페이지랭크를 다루었고, 공동연구 네트워크에서의 중심성을 측정하기 위해서 개발되었거나 사용된 가중 네트워크 중심성 지수로는 삼각매개중심성, 평균연관성, 가중페이지랭크, 공동연구 h-지수와 공동연구 hs-지수, 복합연결정도중심성, c-지수에 대해서 살펴보았으며, 새로운 지수로 제곱근합 지수 SSR을 제안하였다. 이들 12종의 중심성 지수를 건축학, 문헌정보학, 마케팅 분야의 세 가지 공동연구 네트워크에 적용해본 결과 각 지수들의 특성과 지수 간 관계를 파악할 수 있었다. 분석 결과 공동연구 네트워크에서 공동연구 범위와 공동연구 강도를 모두 고려하기 위해서는 가중 네트워크 중심성 지수를 사용해야 하는 것으로 나타났다. 특히 공동연구 범위와 강도를 모두 고려하는 전역중심성을 측정하기 위해서는 삼각매개중심성 지수를 사용하고, 지역중심성을 측정하기 위해서는 SSR 지수를 사용하는 것이 바람직하다고 제안하였다.

Abstract

This study explores the characteristics of centrality measures for analyzing researchers’ impact and structural positions in research collaboration networks. We investigate four binary network centrality measures (degree centrality, closeness centrality, betweenness centrality, and PageRank), and seven existing weighted network centrality measures (triangle betweenness centrality, mean association, weighted PageRank, collaboration h-index, collaboration hs-index, complex degree centrality, and c-index) for research collaboration networks. And we propose SSR, which is a new weighted centrality measure for collaboration networks. Using research collaboration data from three different research domains including architecture, library and information science, and marketing, the above twelve centrality measures are calculated and compared each other. Results indicate that the weighted network centrality measures are needed to consider collaboration strength as well as collaboration range in research collaboration networks. We also recommend that when considering both collaboration strength and range, it is appropriate to apply triangle betweenness centrality and SSR to investigate global centrality and local centrality in collaboration networks.

초록보기
초록

국내 문헌정보학 분야에서 10년간 발표된 논문의 저자와 인용빈도를 대상으로 공저 네트워크에서의 중심성과 연구성과 지수 사이의 관계를 분석하였다. 특히 공저를 고려하지 않고 연구성과 지수를 산출하는 경우와 공저를 고려하여 연구성과 지수를 산출하는 경우로 나누어서 분석하였다. 또한 저자 집단을 논문 수에 따라 다르게 설정하여 지수 사이의 상관관계를 분석한 결과, 연구자의 인용지수와 연구자 중심성 사이의 상관관계에 대한 선행 연구의 일관성없는 결과를 설명해낼 수 있었다. 전체적으로 공저 활동의 정도는 연구성과와 상관관계가 유의하지 않았으며 일부에서는 오히려 부정적인 상관관계를 가진 것으로 나타났다. 중심성과 연구성과 사이의 관계는 통계적으로 유의한 긍정적인 상관관계가 나타났으나 상위 저자 30명만을 대상으로 분석한 결과에서는 상관관계가 유의하지 않았다.

Abstract

We analyzed the relationships between the co-authorship network centralities and the research performance indicators with the authors and the number of citations of the papers published for 10 years in Korean library and information science journals. In particular, the research performance indicators were calculated with normal counting and with fractional counting also. As a result of correlation analysis between the variables by setting the different ranges of the author groups to be analyzed according to the number of articles, it was possible to explain the inconsistent results of the previous studies on the correlations between the researchers' citation indicators and their co-authorship network centralities. Overall, the degree of co-authorship activities measured by collaboration coefficient showed no or negatively correlated with research performance. There were statistically significant positive correlations between the centralities and the research performance indicators, but the correlation was not significant in the analysis of the top 30 authors by number of articles.

초록보기
초록

이 연구는 국내 연구자의 학술지 논문 발표 자료를 활용하여 학문분야간 학술지 공유도를 산출하고, 이로부터 국내 학문분야의 구조를 나타내는 네트워크를 생성하였다. 생성된 패스파인더 네트워크는 ‘생물학’분야를 핵심으로 하는 생명과학 분야가 중앙을 차지하고 있었으며, 인문학과 의약학, 공학에 속한 학문끼리는 학문간 연계가 매우 강하게 나타났다. 가중 네트워크로부터 각 학문분야의 중심성과 학제성을 파악하기 위해서 엔트로피 공식과 가중 네트워크 중심성 척도를 적용한 결과 전역 중심 학문, 지역 중심 학문, 전역 연계 학문, 기타 일반 학문의 네 가지 유형을 식별할 수 있었다. 가중 네트워크를 이진 네트워크로 변환한 패스파인더 네트워크에서는 다수의 약한 링크가 모인 데이트 허브가 드러나지 않았으나, 가중 네트워크에서의 중심성 지수인 삼각매개중심성의 측정 범위를 지역에서부터 전역까지 달리하며 측정한 결과로부터 ‘인지과학’분야와 같은 학제성이 높은 데이트 허브를 식별할 수 있었다.

Abstract

The main purposes of this study are to construct a Korean science network from journal contributions data of Korean researchers, and to analyze the structure and characteristics of the network. First of all, the association matrix of 140 scholarly domains are calculated based on the number of contributions in common journals, and then the Pathfinder network algorithm is applied to those matrix. The resulting network has several hubs such as ‘Biology’, ‘Korean Language & Linguistics’, ‘Physics’, etc. The entropy formula and several centrality measures for the weighted networks are adopted to identify the centralities and interdisciplinarity of each scholarly domain. In particular, the date hubs, which have several weak links, are successively distinguished by local and global triangle betweenness centrality measures.

초록보기
초록

최근 들어 다양한 분야에서 딥러닝이 혁신적인 기계학습 기법으로 급속하게 확산되고 있다. 이 연구에서는 딥러닝 연구동향을 분석하기 위해서 자아 중심 주제 인용분석 기법을 변형하여 응용해보았다. 이를 위해 Web of Science에서 ‘deep learning’으로 탐색하여 검색된 문헌 중 소수의 씨앗 문헌으로부터 인용 관계를 통해 분석 대상 문헌을 확보하는 방법을 시도하였다. 씨앗 문헌을 인용하는 최근 논문들을 딥러닝 분야의 현행 연구를 반영하는 자아 문헌집합으로 설정하였다. 자아 문헌으로부터 빈번히 인용된 선행 연구들은 딥러닝 분야의 연구 주제를 나타내는 인용 정체성 문헌집합으로 설정하였다. 자아 문헌집합에 대해서는 공저 네트워크 분석을 비롯한 정량적 분석을 실시하여 주요 국가와 연구 기관을 파악하였다. 인용 정체성 문헌들에 대해서는 동시인용 분석을 실시하고, 도출된 문헌 군집을 인용하는 주요 키워드인 인용 이미지 키워드를 파악하여 주요 문헌과 주요 연구 주제를 밝혀내었다. 마지막으로 특정 주제에 대한 인용 영향력이 성장하는 추세를 반영하는 인용 성장지수 CGI를 제안하고 측정하여 딥러닝 분야의 선도 연구 주제가 변화하는 동향을 밝혔다.

Abstract

Recently, deep learning has been rapidly spreading as an innovative machine learning technique in various domains. This study explored the research trends of deep learning via modified ego centered topic citation analysis. To do that, a few seed documents were selected from among the retrieved documents with the keyword ‘deep learning’ from Web of Science, and the related documents were obtained through citation relations. Those papers citing seed documents were set as ego documents reflecting current research in the field of deep learning. Preliminary studies cited frequently in the ego documents were set as the citation identity documents that represents the specific themes in the field of deep learning. For ego documents which are the result of current research activities, some quantitative analysis methods including co-authorship network analysis were performed to identify major countries and research institutes. For the citation identity documents, co-citation analysis was conducted, and key literatures and key research themes were identified by investigating the citation image keywords, which are major keywords those citing the citation identity document clusters. Finally, we proposed and measured the citation growth index which reflects the growth trend of the citation influence on a specific topic, and showed the changes in the leading research themes in the field of deep learning.

초록보기
초록

이 연구에서는 White가 제안한 자아 중심 인용 분석을 응용하여 연구 주제에 대한 다층적인 분석을 가능하게 해주는 자아 중심 주제 인용 분석 기법을 제안하였다. 시험적으로 폭소노미에 대한 연구문헌을 Web of Science 데이터베이스로부터 검색한 후 이에 대한 주제 인용 분석을 수행해보았다. 폭소노미 주제에 대한 자아 중심 인용 분석은 자아 문헌 집단 분석, 주제 인용 정체성 분석, 주제 인용 이미지 분석의 세 단계로 나뉘어 수행되었다. 분석 결과 이 연구에서 제안된 자아 중심 주제 인용 분석을 통해서 폭소노미 연구의 내부 지적 구조와 외부 지적 구조를 함께 파악하는 것이 가능함이 확인되었다.

Abstract

This research aims to present the ego-centered topic citation analysis, which is a new application of White’s ego-centered citation analysis, for analyzing multilayered knowledge structure of a subject domain. An experimental topic citation analysis was carried out on the folksonomy research documents retrieved from Web of Science. Ego-centered topic citation analyses on folksonomy research domain were conducted in three stages: ego-documents set analysis, topic citation identity analysis, and topic citation image analysis. The results showed that the ego-centered topic citation analysis suggested in this study was successfully performed to illustrate the inner and the outer knowledge structures of folksonomy research domain.

초록보기
초록

이 연구는 KCI 기타인문학, 기타사회과학, 사회과학일반 분야(이하 ‘일반 및 기타 분야’로 표기)에 속한 학술지의 다학문성과 학제성을 분석한 후, 이를 바탕으로 일반 및 기타 분야의 학술지 분류에 대한 개선방안을 제안하는 것이 목적이다. 개별 학술지의 다학문성과 학제성은 인용관계에 나타난 학술지 단위 엔트로피와 논문 단위 엔트로피로 각각 측정하였다. 학술지 간 인용관계 분석 결과 KCI 일반 및 기타 분야에는 다학문성과 학제성 측면에서 다양한 학술지가 혼재되어 있는 것으로 나타났다. 일반 및 기타 분야 학술지의 분류를 바로잡기 위해서는 우선 학술연구분야 분류표에 인문학일반 분야를 새로 설정할 필요가 있음을 밝혔다. 나아가서 각 학술지의 다학문성 수준 및 학제성 수준을 고려하여 일반 및 기타 분야 학술지를 재분류하는 방안을 제안하였다.

Abstract

This study analyzed humanities and social science (HSS) journals of KCI to examine the multidisciplinarity and interdisciplinarity in the general and miscellaneous fields (hereinafter referred to as ‘GM fields’), The multidisciplinarity and interdisciplinarity identified in this study will be a foundation to improve classification of KCI journals in GM fields. Each journal’s multidisciplinarity and interdisciplinarity were measured by journal-level entropy and document-level entropy, respectively, in the citation relationships. According to the analysis, GM field journals have wide ranges of multidisciplinarity and interdisciplinarity. To improve classification quality of journals in GM fields, the general humanities should be considered as a new classification class for the multidisciplinary and interdisciplinary journals in the humanities. Furthermore, this study proposes a strategy to reclassify GM field journals of HSS according to their multidisciplinarity and interdisciplinarity.

9
김지현(이화여자대학교) ; 정은경(이화여자대학교) ; 윤정원(University of South Florida) ; 이재윤(명지대학교) 2017, Vol.34, No.1, pp.7-29 https://doi.org/10.3743/KOSIM.2017.34.1.007
초록보기
초록

학술 커뮤니티 내에서 논문의 인용은 보편적인 규범으로 자리 잡은 데 비해 데이터의 인용은 아직 초보적인 단계에 머물러 있다. 이를 개선하기 위해 제기되고 있는 데이터 인용의 필요성 및 원칙과 가이드라인에 대해서 살펴보았다. 또한 데이터 인용체계 구축 사례에서는 데이터 인용 요소들을 정의하고 서비스를 제공하는 DataCite, Dataverse Network, Data Citation Index 사례를 중심으로 살펴보았다. 마지막으로 한국종합사회조사 데이터 인용 분석을 통해 국내 데이터세트 인용/이용 정보 제공 실태를 조사하였다.

Abstract

Data citation remains in its infancy, although providing the citation to a journal article is a typical norm in an academic community. This study examines the need for data citation, its principles and guidelines for improving the issue. In addition, the study investigates cases that established data citation mechanism, including DataCite, Dataverse Network and Data Citation Index that define elements of data citation and provide relevant services. At the end, it explores the current state of data citation in Korea through the analysis of citations to dataset from Korean General Social Survey.

초록보기
초록

이 연구에서는 자관의 학술지 상호인용 및 동시인용 분석을 통하여 단순 피인용빈도 이상의 학술지 인용 패턴 분석을 시도 하였다. 이 연구를 통해 학술지의 중요도 파악에 있어서 자관 인용 네트워크의 구조적 분석이 인용빈도 이상의 자관 인용 패턴에 대한 설명을 하고 있는지와, Web of Science에서 제공하는 JIF 이외의 일반적 인용 지수 서비스들을 고려해야 할 필요성이 있는지를 살펴보았다. Y대학교 생명시스템대학 생명공학과 전·현직 교수진이 2006년과 2007년에 발표한 학술논문의 인용 네트워크 분석 및 Web of Science 이외의 일반적 인용 지수들간의 관계를 분석한 결과는 다음과 같다. 첫째, 자관의 상호인용 네트워크를 통해 자관의 연구 분야를 확인할 수 있었다. 둘째, 자관의 동시인용 네트워크 지수들은 자관 인용 네트워크의 구조적 속성을 반영하는 인용 패턴의 설명이 가능하며 이는 피인용빈도와 유사하면서도 추가적인 설명력을 가지는 것을 확인하였다. 셋째, 일반적 인용지수로는 JIF 외에도 합산지향지수, h-index와 같은 다양한 일반적 인용 지수들의 설명력이 다양하므로 이를 이용하여 다각적으로 고려하는 것이 필요한 것으로 파악되었다. 또한 학술지 평가에서 인용 색인 데이터베이스의 수록범위보다는 지수의 유형에 따른 설명력 차이가 크다는 것을 확인하였다. 이와 같은 자관의 인용 네트워크 분석은 정보서비스의 여러 분야에서 유용하게 사용될 수 있을 것으로 기대된다.

Abstract

In this study, we testify that network structural attributes of a citation network can explain other aspects of journal citation behaviors and the importances of journals. And we also testify various citation impact indicators of journals including JIF and h-index to verify the difference among them especially focused on their ability to explain an institution's local features of citation behaviors. An institutional citation network is derived using the articles published in 2006-2007 by biotechnology faculties of Y University. And various journal citation impact indicators including JIF, SJR, h-index, EigenFactor, JII are gathered from different service sites such as Web of Science, SCImago, EigenFactor.com, Journal-Ranking.com. As a results, we can explain the institution's 5 research domains with inter-citation network. And we find that the co-citation network structural features can show explanations on the patterns of institutional journal citation behavior different from the simple cited frequency of the institution or patterns based on general citation indicators. Also We find that journal ranks with various citation indicators have differences and it implies that total-based indices, average-based indices, and hybrid index(h-index) explain different aspects of journal citation pattern. We also reveal that the coverage of citation DB doesn't be a matter in the journal ranking. Analyzing the citation networks derived from an institution's research outputs can be a useful and effective method in developing several library services.

정보관리학회지