바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: 추천시스템, 검색결과: 8
1
홍연경(성균관대학교 문헌정보학과) ; 전서영(성균관대학교 문헌정보학과) ; 최재영(성균관대학교 문헌정보학과) ; 양희윤(성균관대학교 문헌정보학과) ; 한채은(성균관대학교 문헌정보학과) ; 주영준(성균관대학교) 2021, Vol.38, No.2, pp.113-127 https://doi.org/10.3743/KOSIM.2021.38.2.113
초록보기
초록

본 연구는 대학 도서관 사용 증진을 위하여 개인별 맞춤 도서 추천시스템을 구축하는 것을 목적으로 한다. 특히 사용자의 아이템에 대한 선호도가 존재하는 다수의 추천시스템과는 달리, 선호도가 존재하지 않을 때에 도서 추천이 가능하도록 하는 방안인 도서관 이용자의 도서 대출 목록과 성향을 활용하여 평가지표를 생성하는 방법을 제안하고자 한다. 이용자가 아직 읽지 않은 책에 대한 예상 선호도를 산출하는 방식으로 도서를 추천하는 행렬 분해 방법인 Singular Value Decomposition(SVD)과 Stochastic Gradient Descent(SGD) 알고리즘을 활용한 모델을 구축했다. 더불어 유사도가 높은 이용자 그룹 내의 도서 대출 목록을 참조하여 추천하는 사용자 기반 협업 필터링 알고리즘을 활용해 모델을 구현했다. 최종적으로 평가지표를 활용한 세 가지 모델에 대하여 사용자 평가를 진행했다. 각각의 모델이 제시한 개인별 맞춤 도서 다섯 권의 목록을 해당 대출자에게 제공하고, 추천 도서에 대한 만족/불만족 여부를 이진화 점수화하여 모델에 대한 평가를 진행했다.

Abstract

The purpose of this study is to propose a personalized book recommendation system to promote the use of university libraries. In particular, unlike many recommended services that are based on existing users’ preferences, this study proposes a method that derive evaluation metrics using individual users’ book rental history and tendencies, which can be an effective alternative when users’ preferences are not available. This study suggests models using two matrix decomposition methods: Singular Value Decomposition(SVD) and Stochastic Gradient Descent(SGD) that recommend books to users in a way that yields an expected preference score for books that have not yet been read by them. In addition, the model was implemented using a user-based collaborative filtering algorithm by referring to book rental history of other users that have high similarities with the target user. Finally, user evaluation was conducted for the three models using the derived evaluation metrics. Each of the three models recommended five books to users who can either accept or reject the recommendations as the way to evaluate the models.

2
이정연(나사렛대학교) ; 신숙경(한국학술진흥재단) ; 이재윤(경기대학교) ; 정한민(한국과학기술정보연구원) ; 강인수(한국과학기술정보연구원) 2007, Vol.24, No.3, pp.43-65 https://doi.org/10.3743/KOSIM.2007.24.3.043
초록보기
초록

심사자 자동추천시스템은 심사 대상에 대한 포괄성, 전문성, 공정성, 타당성을 확보할 수 있도록 설계되어야 한다. 이를 위해 본 연구는 다면적인 학문분야분류표의 각 범주 간 연관성을 자동으로 산출할 수 있는 확률적 온톨로지를 적용하여 포괄적으로 심사자 추천 범위를 넓히고 전문성을 반영한 심사자 랭킹을 가능하도록 한다. 또한 연구자 간의 멘터, 공저역, 공동연구를 포함하는 연구자 네트워크를 구축하고 이를 심사자 배제 규칙으로 활용함으로써 공정한 심사자 추천이 이루어질 수 있도록 한다. 아울러, 전문가들을 통해 상기 방법론과 패널 결과를 검증 받아 타당성 있는 시스템이 갖추어야 할 방향을 제시한다.

Abstract

Automatic Recommendation System of Panel pool should be designed to support universal, expertness, fairness, and reasonableness in the process of review of proposals. In this research, we apply the theory of probabilistic ontology to measure relatedness between terms in the classification of academic domain, enlarge the number of review candidates , and rank recommendable reviewers according to their expertness. In addition, we construct a researcher network connecting among researchers according to their various relationships like mentor, coauthor, and cooperative research. We use the researcher network to exclude inappropriate reviewers and support fairness of reviewer recommendation process. Our methodology recommending proper reviewers is verified from experts in the field of proposal examination. It propose the proper method for developing a resonable reviewer recommendation system.

초록보기
초록

본 연구는 대용량 음악콘텐츠환경에서 개인화 추천 서비스를 위한 기반구조의 제공을 위하여 시도되었다. 추천서비스를 위한 기존의 많은 연구와 상용프로그램에도 불구하고 대규모의 쇼핑몰들은 개인화 추천서비스와 실시간으로 대용량의 데이터를 처리할 수 있는 추천시스템을 필요로 하고 있다. 이를 위하여 본 연구에서는 데이터마이닝 기술과 새로은 패턴매칭 알고리즘을 제안하고 있다. 콘텐츠 주제분야에 대한 이용자의 선호도를 이용한 이용자 분할을 위하여 군집화 기법이 사용되었다. 다음으로는 군집화를 통하여 생성된 분할된 이용자 그룹에서 개별 이용자의 콘텐츠에 대한 접근 패턴의 추출을 위하여 순차패턴 마이닝기법을 적용하였다. 최종적으로 각각의 이용자 군집의 콘텐츠 접근 패턴과 콘텐츠 선호도에 기반한 제안된 추천 알고리즘에 의해 추천이 이루어진다. 이러한 추천을 위하여 기반구조와 함께, 전처리과정과 원본 데이터의 형식변환이 데이터베이스에서 수행되어진다. 본 연구에서 제안하고 있는 기반구조의 적절성을 보여주기 위하여 제안된 시스템을 구현하였다. 실제 이용자에 의해 이용된 데이터를 실험에 적용하였으며, 해당 실험에서 추천은 실시간으로 이루어졌으며 추천결과에 있어서는 적절한 정확성을 보여주고 있다.

Abstract

This study attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of many existing studies and commercial solutions for a recommendation service, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time.This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. Finally, the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.

4
장령령(전남대학교 문헌정보학과) ; 장우권(전남대학교) 2016, Vol.33, No.1, pp.317-336 https://doi.org/10.3743/KOSIM.2016.33.1.317
초록보기
초록

오늘날 폭발적인 정보의 증가로 이용자들은 자신이 원하는 정보를 찾기 위해 엄청난 시간과 노력을 기울여야 한다. 이 문제를 해결하기 위하여 이용자의 정보요구를 분석하고 이용자에게 적합한 논문을 추천해주는 논문추천시스템이 등장하고 있다. 그러나 대부분의 논문추천시스템은 논문추천시스템의 핵심인 이용자 프로파일을 간과하고 있다. 따라서 이 연구는 논문추천시스템의 성능을 좌우하는 이용자 프로파일을 기존의 평균으로 계산하지 않고 새로운 TPIPF(Topic Proportion-Inverse Paper Frequency)로 계산하는 방법을 제안하였다. 제안된 방법과 기존의 방법을 모두 논문추천시스템에 적용하여 각각의 성능을 온라인 참고문헌 관리도구인 CiteULike에서 제공된 데이터 실험을 통하여 비교하였다. 그 결과 제안된 TPIPF 방법을 적용한 논문추천시스템의 성능이 더 높다는 것을 알 수 있었다.

Abstract

Nowadays users spend more time and effort to find what they want because of information overload. To solve the problem, scientific article recommendation system analyse users’ needs and recommend them proper articles. However, most of the scientific article recommendation systems neglected the core part, user profile. Therefore, in this paper, instead of mean which applied in user profile in previous studies, New TPIPF (Topic Proportion-Inverse Paper Frequency) was applied to scientific article recommendation system. Moreover, the accuracy of two scientific article recommendation systems with above different methods was compared with experiments of public dataset from online reference manager, CiteULike. As a result, the proposed scientific article recommendation system with TPIPF was proven to be better.

초록보기
초록

정보기술과 인터넷의 발전에 따른 정보의 폭발적인 증가로 인하여 정보과잉에 따른 적절한 정보의 선택이 필요하게 되었다. 이를 위하여 이용자가 정보를 효율적으로 이용할 수 있도록 검색 또는 여과하는 일을 수행하기 위하여 정보검색 및 정보여과 시스템이 등장하게 되었다. 이러한 일련의 정보환경의 변화에 대한 보다 적극적인 대응방법으로서 도서관 및 정보센터에서는 이용자가 원하는 정보를 정확하고 효율적으로 제공하기 위한 노력의 일환으로서 이용자에게 맞춤화된 정보 추천서비스 제공이 요구된다. 본 연구에서는 도서관 및 정보센터에서 적극적인 정보서비스를 위한 방법으로 이용자에게 맞춤화된 정보를 제공할 수 있는 개인화 추천시스템을 구축하기 위한 방안을 제안하였다. 이를 위하여 기존의 추천방법에 대한 장단점을 분석하고 기존 추천방법에 대한 문제점을 해결하기 위한 방법으로서 대용량 콘텐츠 및 이용자 환경에서 이용자의 콘텐츠 이용빈도를 기준으로 멀티미디어 콘텐츠를 위한 개인화된 하이브리드 추천방법을 제안하였다. 이를 위하여 이용빈도에 있어서 상위 이용자 및 콘텐츠를 분리하고 적절한 추천방법에 적용하기 위한 새로운 형태의 추천방법 및 대용량 추천시스템에 적합한 연관규칙과 협업여과방법에 대한 조합방법을 제안하였다.

Abstract

Recent advancements in information technology and the Internet have caused an explosive increase in the information available and the means to distribute it. However, such information overflow has made the efficient and accurate search of information a difficulty for most users. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Libraries and information centers have been in the forefront to provide customized services to satisfy the user's information needs under the changing information environment of today. The aim of this study is to propose an efficient information service for libraries and information centers to provide a personalized recommendation system to the user. The proposed method overcomes the weaknesses of existing systems, by providing a personalized hybrid recommendation method for multimedia contents that works in a large-scaled data and user environment. The system based on the proposed hybrid method uses an effective framework to combine Association Rule with Collaborative Filtering Method.

초록보기
초록

본 연구에서는 도서관과 정보센터에서 전통적으로 제공되어진 SDI 서비스와 함께 일부 기관에서 제공하고 있는 맞춤정보 서비스를 기반으로 한 개인화 정보 서비스 시스템의 기술요소 및 전체 시스템의 구조를 제안하였다. 제안된 개인화 정보 서비스 시스템은 이용자의 개인 프로파일정보를 바탕으로 이용자의 정보탐색행태 등을 추가 입력 값으로 해서 학습과정을 거쳐 이용자에게 가장 적절한 정보를 출력 값으로 제공할 수 있다. 이를 위해 개인화 정보 서비스 시스템에서 가장 중요한 기능을 수행하는 학습시스템과 추천시스템을 구축하는데 필요한 요소에 대해 살펴보았다.

Abstract

With SDI service provided in libraries and information centers traditionally, this paper studies component technologies and structure of system platform in PIS (personalization information service based on the customized information service served currently in some institutions. The PIS system should provide relevant information as an output through the learning system analyzing user information searching behavior as an input value with personal profile information. To do it, this paper studies requirements and algorithms to develop PIS, and proposes learning system and recommendation system as core components in PIS.

7
김민철(제주대학교) ; 권순만(서울대학교) 2002, Vol.19, No.3, pp.49-68 https://doi.org/10.3743/KOSIM.2002.19.3.049
초록보기
초록

본 연구는 국내 건강정보 사이트의 평가 모형을 제시하고 이를 통해 소비자 만족에 영향을 미치는 요인들을 분석하였다. 이를 위해 건강정보 사이트 방문자들을 대상으로 한 설문조사 결과를 공변량구조모형을 이용해 분석하였다. 연구 결과 사이트 평가 요인은 컨텐츠, 웹시스템 그리고 고객서비스의 3개 요인으로 나누어졌으며, 이들 요인 중에서도 정보내용과 관련된 컨텐츠 요인이 고객 만족도와 통계적으로 가장 유의한 정의 관계를 보여주고 있음을 알 수 있었다. 또한 평가요인이 소비자 만족도와 이용료 수준의 적정성에 영향을 미치고, 이러한 고객반족이 타인추천에 영향을 미치는 것으로 나타났다.

Abstract

The purpose of this paper is to examine the evaluation models of internet sites and to analyze the factors affecting the consumer satisfaction of health information sites in the Internet. Based on the covariance structural model applied to a customer survey, this study shows that among the characteristics of the site. contents has the most significant effect on customer satisfaction, which in turn affects the consumer willingness to recommend the site to others.

초록보기
초록

기본의미등록기(BSR)는 전자상거래 및 EDI 관련 시스템 사이의 상호연동을 가능하게 하기 위한 등록기이다. XML 기반 BSR 등록개체들의 구조정보나 다양한 관계의 자동추출은 현재 불가능하다. 이 연구에서는 BSR에 등록되는 정보를 자원기술-프레임웍(RDF)과 웹온톨로지언어(OWL)에 기반하는 기계가독형으로 정의한 대표적인 예를 제시하고 결론적으로 5개의 기본 권고안을 도출하였다. 즉 BSR 컴포넌트 소속의 클래스 정의에서 동의어의 표현에는 OWL의 'sameAs', 유사어 표현에는 OWL의 'equivalenlClass', BSR 개념들 간의 상.하 관계 표현은 RDF 스키마의 'subClassOF', BSR의 의미단위(BSU)에 관한 정의는 RDF 스키마의 'label', 인스턴스 용례에 관한 설명은 RDF 스키마의 'comment', 각 BSU의 클래스 소속에 관한 정의는 RDF 스키마의 'domain', BSU가 취할 수 있는 데이터유형에 대한 정의는 RDF 스키마의 'range'등을 적용하며, 나아가 BSR 데이터요소의 정의에 XML 스키마의 데이터 유형을 접목시키고 BSU들 간의 상.하 관계 표현에 RDF 스키마의 'subPropertyOF'를 적용할 것을 추천하였다.

Abstract

The Basic Semantic Register(BSR) is and official ISO register designed for interoperability among eBusiness and EDI systems. The entities registered in the current BSR are not defined in a machine-understandable way, which renders automatic extraction of structural and relationship information from the register impossible. The purpose of this study is to offer a framework for designing an ontology that can provide semantic interoperability among BSR-based systems by defining data structures and relationships with RDF and OWL, similar meaning by the 'equivalentClass' construct in OWL, the hierachical relationships among classes by the 'subClassOf' construct in RDF schema, definition of any entities in BSR by the 'label' construct in RDF schema, specification of usage guidelines by the 'comment' construct in RDF schema, assignment of classes to BSU's by the 'domain' construct in RDF schema, specification of data types of BSU's by the 'range' construct in RDF schema. Hierarchical relationships among properties in BSR can be expressed using the 'subPropertyOf' in RDF schema. Progress in semantic interoperability can be expected among BSR-based systems through applications of semantic web technology suggested in this study.

정보관리학회지