바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: 인용분석, 검색결과: 79
초록보기
초록

이 연구에서는 연구자의 연구 이력을 분석하기 위해서 White(2000)가 제안한 인용 정체성과 Hellsten 등(2007)이 제안한 자기 인용 네트워크의 두 가지 최신 기법을 비교해보았다. 국내 대표적인 정보학자인 정영미의 연구 성과물을 대상으로 실험적인 분석을 수행해본 결과 두 기법에서 구분한 연구 시기가 동일하게 나뉘었으며 주요 연구 주제도 유사하게 파악되었다. 그러나 인용 정체성 지도에서는 주제영역별로 영향받은 주요 저자를 파악할 수 있는 반면에 자기 인용 네트워크에서는 시기별 핵심 문헌과 선도 문헌이 식별되었다. 따라서 이 두 가지 기법을 상호보완적으로 사용할 때 연구자의 연구 이력에 대해서 풍부한 정보를 획득할 수 있다는 결론을 얻었다.

Abstract

This paper compares two recent methods for exploring a scientist's research history: citation identity and self-citation network. The former is proposed by White(2000), while the latter is suggested by Hellsten et al.(2007). An experimental citation analysis was carried out on the research output of Young Mee Chung, a renouned Korean information scientist. The result shows that the two methods divided the research period into two sub-periods in the same way. They also identified the major research themes very similarly. In the analysis of each method's performance in depth, the two methods revealed different functions to understand a researcher's history. Citation identity was useful to identify authors who have affected Chung's research in terms of research topics. whereas, self-citation network was successful to identify the core papers and leading papers of the research sub-periods. This study indicates the combination of two methods can provide rich information on a scientist's research history.

초록보기
초록

본 논문은 기존의 학회지 중심의 연구와는 다른 현장중심의 학술지를 통하여 문헌정보학의 연구동향을 파악하기 위하여 1996년부터 2000년까지 “도서관”, “국회도서관보”, “도서관문화”에 게재된 논문을 대상으로 하여 문헌정보학 분야의 연구영역과 주제의존도 및 핵심저널을 분석하고자 하였다. 본 연구 결과, 실무에 있어서의 주된 연구분야는 문헌정보학분야에 대한 의존도가 큰 것으로 나타났으며 정보학에 대한 의존도는 낮은 것으로 분석되었다.

Abstract

Different from the existing tendency to mainly concentrate on the study of research activities of the library and information science, this paper places the focus on grasping research patterns presented in the journal papers which reflect library practices. Actually, this paper analyzes research areas, the degree of relative dependence by subjects, and leading journals found in the papers which have been reported in the three main library journals such as "Tosogwan", "National Assembly Library Review", and "KLA Bulletin : Tosogwanmunwha," from 1996 to 2000. As a result, the study says that major research areas in library practices show the high degree of dependence on the library and information science, while the degree of dependence on the information science is low.

초록보기
초록

저자동시인용분석 기법은 특정 분야의 연구 주제와 동향을 파악하는 수단으로 널리 사용되어왔다. 그러나 저자동시인용분석 기법은 인용 지체 현상 때문에 최근 동향을 나타내거나 활동적인 현역 연구자를 파악하기에는 다소 한계가 있음이 알려져 있다. 이 연구에서는 최신 연구 동향을 분석함과 동시에 활동적인 연구자를 파악하기위한 새로운 방법으로 서지적 저자결합분석 기법을 제안한다. 이 기법은 Kessler가 제안한 서지결합에 기반을 두되 분석 단위를 문헌이 아닌 저자로 삼고 있다. 즉 서지적 저자결합분석 기법은 같은 저자를 인용하는 저자끼리는 연구 주제가 유사할 것이라는 가정에 근거한 분석 기법이다. 저자동시인용분석 기법을 사용한 기존 연구의 분석 결과를 서지적 저자결합분석을 적용한 경우와 비교해본 결과, 제안된 기법이 저자동시인용분석 기법에 비해서 최근 연구 동향을 더 잘 반영하며 활동적인 현역 연구자 위주의 해석을 가능케 하는 것으로 나타났다.

Abstract

Author co-citation analysis(ACA) technique has been widely used for identifying research areas and trends in a discipline. But this technique has some limitations, mainly due to citation delay, on analyzing current trends and identifying active researchers. In this study, a new method, named as Bibliographic Author Coupling Analysis(BACA), is suggested for overcoming those limitations of author co-citation analysis. BACA is based on Kessler's bibliographic coupling approach and focuses not on documents but on authors. Simply stated, BACA technique assumes that those likewise citing authors have the same research interests. For the purpose of comparing with author co-citation analysis, two preceding studies with author co-citation analysis are reconsidered and re-examined using BACA. The comparing results can be regarded as promising the usefulness of BACA in analyzing current research trends and identifying active researchers.

4
서선경(한국과학기술정보연구원) ; 최호남(한국과학기술정보연구원) ; 김병규(KISTI) ; 최선희(한국과학기술정보연구원) ; 김정환(한국과학기술정보연구원) 2016, Vol.33, No.2, pp.157-176 https://doi.org/10.3743/KOSIM.2016.33.2.157
초록보기
초록

Cited-by Linking 서비스는 CrossRef에서 제공하는 주요 서비스 중 하나로 해당 논문이 DOI를 통하여 얼마나 인용되었는지 누적하여 집계된 데이터이다. 이에 본 연구에서는 KISTI의 학술정보통합관리시스템에서 월단위로 구축․관리하는 Cited-by Linking 데이터를 분석하여 자연과학과 공학 분야의 인용 패턴을 규명하고자 하였다. 이를 위해서 전체 기탁된 21만 건 중 자연과학과 공학 분야 총 170,999건(315종)을 분석 대상으로 하고, 2016년 3월까지 누적된 Cited-by Linking 데이터를 수집하였다. 연구의 분석 결과, 첫째, 글로벌하게 인용될 가능성에서 사용 언어는 영향을 미치고 있으며, 둘째, SCIE 및 SCOPUS 등재 여부 역시 인용가능성에 상당 부분 기여하고 있음을 확인하였다. 셋째, 자연과학 분야는 거의 동일한 주제 분야에서 인용을 받고 있으며, 상대적으로 공학 분야는 타주제 분야에서 더 인용 받고 있음을 파악하였다. 이러한 연구의 결과는 자연과학과 공학 분야의 세부주제 분야별 인용 행태를 규명하고, 향후, 인용 행태에 관한 연구에서 유용하게 활용될 것으로 기대한다.

Abstract

Cited-by Linking Service is one of the CrossRef’s information services that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. This study tries to investigate citation patterns in the field of both Natural Science and Engineering using all of DOI assigned articles and Cited-by Linking data which are accumulated and managed by KISTI. The investigating approach is designed to verify the theory of 1) cognitive accessibility, 2) ‘perceived quality and significance’ and 3) ‘subject relativity’. For cognitive accessibility verification the fulltext language portion of Korean and English between “Cited DOI Source Data” and “NOT Cited DOI Source Data” was compared. For perceived quality and significance verification the availability of the “Cited DOI Source Data” and “NOT Cited DOI Source Data” from SCIE and SCOPUS was employed. For subject relativity DOI data were classified and analysed on the basis of OECD subject classification scheme. Findings are that global citability is closely related to the fulltext language of the articles and their quality and significance. And in the natural science field most of citations are from the same subject categories, while relatively more citations are from other subject categories in the engineering field.

5
정은경(이화여자대학교 사회과학대학 문헌정보학과 교수) 2020, Vol.37, No.1, pp.153-177 https://doi.org/10.3743/KOSIM.2020.37.1.153
초록보기
초록

오픈과학의 흐름에서 데이터 공유와 재이용은 중요한 연구자의 활동이 되어가고 있다. 데이터 공유와 재이용에 관한 여러 논의 중에서 데이터학술지와 데이터논문의 발간이 가시적인 결과를 보여주고 있다. 데이터학술지는 여러 학문 분야에서 발간되고 있으며, 논문의 수도 점차 증가하고 있다. 데이터논문은 데이터 자체와는 다르게 인용을 주고 받는 활동이 포함되어, 따라서 이들이 형성하는 고유한 지적구조가 생겨나게 된다. 본 연구는 데이터학술지와 데이터논문이 학술커뮤니티에서 구성하는 지적구조를 규명하고자 Web of Science에 색인된 14종의 데이터학술지와 6,086건의 데이터논문과 인용된 참고문헌 84,908건을 분석하였다. 저자사항과 함께 동시인용분석과 서지결합분석을 네트워크로 시각화하여 데이터논문이 형성한 세부 주제 분야를 규명하였다. 분석결과, 저자, 저자소속기관, 국가를 추출하여 출현빈도를 살펴보면, 전통적인 학술지 논문과 다른 양상을 보인다. 이러한 결과는 데이터의 생산이 용이한 기관과 국가에 주로 데이터논문을 출간하기 때문이라고 해석될 수 있다. 동시인용분석와 서지결합분석 모두 분석도구, 데이터베이스, 게놈구성 등이 주된 세부 주제 영역으로 나타났다. 동시인용분석결과는 9개의 군집으로 형성되었는데, 특정 주제 분야로 나타난 영역은 수질과 기후 등의 분야이다. 서지결합분석은 총 27개의 컴포넌트로 구성되었는데, 수질, 기후 이 외에도 해양, 대기 등의 세부 주제 영역이 파악되었다. 특기할만한 사항으로는 사회과학 분야의 주제 영역도 나타났다는 점이다.

Abstract

In the context of open science, data sharing and reuse are becoming important researchers’ activities. Among the discussions about data sharing and reuse, data journals and data papers shows visible results. Data journals are published in many academic fields, and the number of papers is increasing. Unlike the data itself, data papers contain activities that cite and receive citations, thus creating their own intellectual structures. This study analyzed 14 data journals indexed by Web of Science, 6,086 data papers and 84,908 cited references to examine the intellectual structure of data journals and data papers in academic community. Along with the author’s details, the co-citation analysis and bibliographic coupling analysis were visualized in network to identify the detailed subject areas. The results of the analysis show that the frequent authors, affiliated institutions, and countries are different from that of traditional journal papers. These results can be interpreted as mainly because the authors who can easily produce data publish data papers. In both co-citation and bibliographic analysis, analytical tools, databases, and genome composition were the main subtopic areas. The co-citation analysis resulted in nine clusters, with specific subject areas being water quality and climate. The bibliographic analysis consisted of a total of 27 components, and detailed subject areas such as ocean and atmosphere were identified in addition to water quality and climate. Notably, the subject areas of the social sciences have also emerged.

6
김홍렬(전주대학교) 2003, Vol.20, No.4, pp.1-21 https://doi.org/10.3743/KOSIM.2003.20.4.001
초록보기
초록

본 연구는 국내 과학기술분야 인용정보의 형태 및 출판경과시간에 따른 인용비율과 인용나이를 분석하여 과학기술문헌의 수명을 측정하고, 국내 연구자들의 국내외 정보원의 의존도를 밝히는데 그 목적이 있다. 이를 위하여 국내 과학기술분야 가운데 대표적인 영역인 기계, 건축, 화학, 전기전자분야에 대한 학술잡지 198건의 논문기사에 인용된 2,619건의 문헌을 대상으로 정보 인용형태의 차이와 특성을 비교 분석하였다. 그 결과 학술잡지, 도서, 회의자료, 연구보고서의 순서로 많이 인용되고 있었으며, 정보의 해외의존도는 화학분야가 가장 높았다. 인용문헌의 나이분석에서 국내문헌의 약 70%이상이 출판된 지 5년 이내의 문헌이었고, 전체로는 약60% 이상이 출판된 지 10년 이내의 정보원으로 나타났다. 또한 문헌의 반감기는 기계 6.50년, 건축 5.45년, 화학 9.65년, 전기전자 5.60년으로 측정되었다.

Abstract

The purpose of this study is to analysis the types of cited materials. dependence ratio of foreign information of researchers. and half-life of some cited analysis. Journal articles from four science & technology fields-mechanical, architectural, chemical, electrical-are selected, and the literatures cited by those journal articles are analysed in terms of resource types. languages, publication year of cited analysis. In result, it was found that the order of frequency of citation is scholarly journal, monograph, proceeding, technical report. And dependence ratio of foreign information of researchers was most higher in the chemical field. Also. it was found that half-life of mechanical is 6.50, that of architectural is 5.45, that of chemical is 9.65, that of electrical is 5.60.

초록보기
초록

최근 들어 다양한 분야에서 딥러닝이 혁신적인 기계학습 기법으로 급속하게 확산되고 있다. 이 연구에서는 딥러닝 연구동향을 분석하기 위해서 자아 중심 주제 인용분석 기법을 변형하여 응용해보았다. 이를 위해 Web of Science에서 ‘deep learning’으로 탐색하여 검색된 문헌 중 소수의 씨앗 문헌으로부터 인용 관계를 통해 분석 대상 문헌을 확보하는 방법을 시도하였다. 씨앗 문헌을 인용하는 최근 논문들을 딥러닝 분야의 현행 연구를 반영하는 자아 문헌집합으로 설정하였다. 자아 문헌으로부터 빈번히 인용된 선행 연구들은 딥러닝 분야의 연구 주제를 나타내는 인용 정체성 문헌집합으로 설정하였다. 자아 문헌집합에 대해서는 공저 네트워크 분석을 비롯한 정량적 분석을 실시하여 주요 국가와 연구 기관을 파악하였다. 인용 정체성 문헌들에 대해서는 동시인용 분석을 실시하고, 도출된 문헌 군집을 인용하는 주요 키워드인 인용 이미지 키워드를 파악하여 주요 문헌과 주요 연구 주제를 밝혀내었다. 마지막으로 특정 주제에 대한 인용 영향력이 성장하는 추세를 반영하는 인용 성장지수 CGI를 제안하고 측정하여 딥러닝 분야의 선도 연구 주제가 변화하는 동향을 밝혔다.

Abstract

Recently, deep learning has been rapidly spreading as an innovative machine learning technique in various domains. This study explored the research trends of deep learning via modified ego centered topic citation analysis. To do that, a few seed documents were selected from among the retrieved documents with the keyword ‘deep learning’ from Web of Science, and the related documents were obtained through citation relations. Those papers citing seed documents were set as ego documents reflecting current research in the field of deep learning. Preliminary studies cited frequently in the ego documents were set as the citation identity documents that represents the specific themes in the field of deep learning. For ego documents which are the result of current research activities, some quantitative analysis methods including co-authorship network analysis were performed to identify major countries and research institutes. For the citation identity documents, co-citation analysis was conducted, and key literatures and key research themes were identified by investigating the citation image keywords, which are major keywords those citing the citation identity document clusters. Finally, we proposed and measured the citation growth index which reflects the growth trend of the citation influence on a specific topic, and showed the changes in the leading research themes in the field of deep learning.

초록보기
초록

이 연구에서는 White가 제안한 자아 중심 인용 분석을 응용하여 연구 주제에 대한 다층적인 분석을 가능하게 해주는 자아 중심 주제 인용 분석 기법을 제안하였다. 시험적으로 폭소노미에 대한 연구문헌을 Web of Science 데이터베이스로부터 검색한 후 이에 대한 주제 인용 분석을 수행해보았다. 폭소노미 주제에 대한 자아 중심 인용 분석은 자아 문헌 집단 분석, 주제 인용 정체성 분석, 주제 인용 이미지 분석의 세 단계로 나뉘어 수행되었다. 분석 결과 이 연구에서 제안된 자아 중심 주제 인용 분석을 통해서 폭소노미 연구의 내부 지적 구조와 외부 지적 구조를 함께 파악하는 것이 가능함이 확인되었다.

Abstract

This research aims to present the ego-centered topic citation analysis, which is a new application of White’s ego-centered citation analysis, for analyzing multilayered knowledge structure of a subject domain. An experimental topic citation analysis was carried out on the folksonomy research documents retrieved from Web of Science. Ego-centered topic citation analyses on folksonomy research domain were conducted in three stages: ego-documents set analysis, topic citation identity analysis, and topic citation image analysis. The results showed that the ego-centered topic citation analysis suggested in this study was successfully performed to illustrate the inner and the outer knowledge structures of folksonomy research domain.

9
유재복(한국원자력연구원) ; 정영미(연세대학교) 2010, Vol.27, No.4, pp.239-258 https://doi.org/10.3743/KOSIM.2010.27.4.239
초록보기
초록

이 연구에서는 특허의 인용에 영향을 미치는 주요 변수들을 토대로 특허의 피인용횟수를 예측하기 위한 모형을 제시하였다. 이를 위해 미국특허를 대상으로 5개 주제분야에 걸쳐 특허의 피인용횟수와 일정 수준 이상의 상관관계, 즉 5% 이상의 설명력을 갖는 것으로 밝혀진 페이지 수, 청구항 수, 참고문헌 평균 피인용횟수, 서지결합도, 문헌간유사도 등 5개 변수들을 토대로 다중회귀분석을 실시하였다. 연구결과에 따르면, 제시된 5개 주제분야의 특허인용 예측모형의 설명력은 주제분야에 따라 58.3%~89.6%로 나타났으며, 예측변수로 사용된 5개의 독립변수 중 특허 피인용횟수에 가장 영향력이 높은 변수는 ‘문헌간유사도’로 나타났다. 또한 이 연구에서 추정된 주제분야별 예측모형을 토대로 산출한 특허 피인용횟수에 대한 예측값과 실제값을 비교한 결과 이들 예측모형은 5개 주제분야에서 모두 적합한 것으로 나타났다.

Abstract

The purpose of this study is to develop a prediction model of patent citation counts based on major factors which affect patent citation. To this end, we performed multiple regression analysis between the patent citation counts and five explanatory variables such as the number of pages, the number of claims, the reference-average-citation rate, the strength of bibliographic coupling, and the document similarity proved as having 5% or more standardized variances(r2) with patent citation counts, with a test dataset of U.S. patents in five subject fields. As a result, our prediction models showed 58.3% to 89.6% predictability depending on subject fields and revealed the document similarity has the highest impact on citation counts among the five predictive variables in all the subject fields. The result of comparison between the predicted citation counts and the actual ones confirmed the usefulness of the citation prediction models built for each subject field.

10
오유진(전북대학교) ; 오효정(전북대학교) ; 김종혁(전북대학교) ; 김용(전북대학교) 2016, Vol.33, No.1, pp.247-268 https://doi.org/10.3743/KOSIM.2016.33.1.247
초록보기
초록

Abstract

Although it has been a long subject of study why researchers prefer some cited documents to others, the existing relative researches have had a variety of perspectives on the nature and complexity of the citation behavior and not provided a complete answer to this question. In particular, Korea researchers mainly used statistical analysis of bibliographic information, which has limitations in revealing dynamic and complex cognitive aspects of the citation process. In this study, I investigate the citer perception of citing motives and bibliographic factors through survey and compared the responses according to the researchers’ characteristics. After extracting the 22 motivations and 21 factors through the literature analysis and configuring a 5-point Likert scale questions, I conducted a survey in the wat of an e-mail attachment. From the SPSS 22.0, the frequency analysis, t-test, and one-way ANOVA were performed on the 354 valid samples. As a result, it is found that supporting is considered the most important citing motive and social connection, self-citation have little influence. In the case of bibliographic factors, the journal’s reputation was recognized the most influential factor and the number of pages and authors was the least. Significant differences in fields of study and research careers were showed in some parts. These results can substantiate earlier studies, determine whether the factors assumed influential in selecting references were intended, and suggest the search point to the specialty library or academic database.

정보관리학회지