바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
검색어: 다학문성, 검색결과: 78
1
오유진(전북대학교) ; 오효정(전북대학교) ; 김종혁(전북대학교) ; 김용(전북대학교) 2016, Vol.33, No.1, pp.247-268 https://doi.org/10.3743/KOSIM.2016.33.1.247
초록보기
초록

Abstract

Although it has been a long subject of study why researchers prefer some cited documents to others, the existing relative researches have had a variety of perspectives on the nature and complexity of the citation behavior and not provided a complete answer to this question. In particular, Korea researchers mainly used statistical analysis of bibliographic information, which has limitations in revealing dynamic and complex cognitive aspects of the citation process. In this study, I investigate the citer perception of citing motives and bibliographic factors through survey and compared the responses according to the researchers’ characteristics. After extracting the 22 motivations and 21 factors through the literature analysis and configuring a 5-point Likert scale questions, I conducted a survey in the wat of an e-mail attachment. From the SPSS 22.0, the frequency analysis, t-test, and one-way ANOVA were performed on the 354 valid samples. As a result, it is found that supporting is considered the most important citing motive and social connection, self-citation have little influence. In the case of bibliographic factors, the journal’s reputation was recognized the most influential factor and the number of pages and authors was the least. Significant differences in fields of study and research careers were showed in some parts. These results can substantiate earlier studies, determine whether the factors assumed influential in selecting references were intended, and suggest the search point to the specialty library or academic database.

2
강범일(연세대학교) ; 이재윤(명지대학교) 2014, Vol.31, No.3, pp.293-311 https://doi.org/10.3743/KOSIM.2014.31.3.293
초록보기
초록

이 연구에서는 계량정보학적 기법을 사용하여 국내 트위터 관련 연구의 동향을 분석하고자 하였다. 이를 위해 KCI에서 검색된 2009년부터 2014년 4월까지의 트위터 관련 논문 539편에서 제목, 초록, 키워드를 추출하여 분석 자료로 삼았다. 프로파일링 기법을 이용해 트위터 관련 연구가 수행된 학문 분야와 저널을 분석하였고, 동시출현단어 분석을 통해 트위터 관련 연구의 세부 주제 영역을 파악하였다. 그 결과, 국내 트위터 관련 연구는 53개 학문분야에서 다양하게 다루어지고 있으며 핵심 분야는 신문방송학, 경영학, 컴퓨터학 분야로 나타났다. 세부 주제로는 선거를 비롯한 정치 관련 이슈가 가장 많이 다루어졌으며, 기업/구매 관련 이슈도 활발히 연구되었음을 확인할 수 있었다.

Abstract

This study explored the research trends on Twitter in Korea by informetric methods. All 539 articles on Twitter published from 2009 to the April of 2014 were obtained from the KCI. Only article titles, abstracts, and keywords by authors were used in analysis. Academic journals in many different disciplines where Twitter articles were produced were analysed by profiling, and then, the subject areas of researches on Twitter were analysed by co-word analysis. The results of this study showed that Twitter-related papers were published in as many as 53 disciplines with journalism, business administration, and computer science to be core fields. It was also found that the core subject areas are political issues and business.

초록보기
초록

이 연구는 국내 연구자의 학술지 논문 발표 자료를 활용하여 학문분야간 학술지 공유도를 산출하고, 이로부터 국내 학문분야의 구조를 나타내는 네트워크를 생성하였다. 생성된 패스파인더 네트워크는 ‘생물학’분야를 핵심으로 하는 생명과학 분야가 중앙을 차지하고 있었으며, 인문학과 의약학, 공학에 속한 학문끼리는 학문간 연계가 매우 강하게 나타났다. 가중 네트워크로부터 각 학문분야의 중심성과 학제성을 파악하기 위해서 엔트로피 공식과 가중 네트워크 중심성 척도를 적용한 결과 전역 중심 학문, 지역 중심 학문, 전역 연계 학문, 기타 일반 학문의 네 가지 유형을 식별할 수 있었다. 가중 네트워크를 이진 네트워크로 변환한 패스파인더 네트워크에서는 다수의 약한 링크가 모인 데이트 허브가 드러나지 않았으나, 가중 네트워크에서의 중심성 지수인 삼각매개중심성의 측정 범위를 지역에서부터 전역까지 달리하며 측정한 결과로부터 ‘인지과학’분야와 같은 학제성이 높은 데이트 허브를 식별할 수 있었다.

Abstract

The main purposes of this study are to construct a Korean science network from journal contributions data of Korean researchers, and to analyze the structure and characteristics of the network. First of all, the association matrix of 140 scholarly domains are calculated based on the number of contributions in common journals, and then the Pathfinder network algorithm is applied to those matrix. The resulting network has several hubs such as ‘Biology’, ‘Korean Language & Linguistics’, ‘Physics’, etc. The entropy formula and several centrality measures for the weighted networks are adopted to identify the centralities and interdisciplinarity of each scholarly domain. In particular, the date hubs, which have several weak links, are successively distinguished by local and global triangle betweenness centrality measures.

4
김동훈(성균관대학교 문헌정보학과) ; 김규리(성균관대학교 문헌정보학과) ; 주영준(성균관대학교 문헌정보학과) 2021, Vol.38, No.1, pp.53-69 https://doi.org/10.3743/KOSIM.2021.38.1.053
초록보기
초록

본 연구에서는 다학제적 연구가 활발해진 국내 연구의 동향을 파악하기 위하여 2020 구글 스칼라 매트릭스에 색인된 국내 주요 학술지 데이터를 활용하여 전 학문분야를 포괄하는 네트워크 분석(대학협력 네트워크, 키워드 동시출현 네트워크, 학술지 인용 네트워크, 학문분야 인용 네트워크)을 실시하였다. 대학협력 네트워크 분석결과, 서울대학교, 계명대학교, 성균관대학교 등 협력연구를 활발히 진행하는 대학을 파악할 수 있었고, 키워드 동시출현 네트워크 분석결과, 이직의도, 직무만족 등 직무 관련 키워드가 높은 빈도로 나타남을 확인하였다. 학술지 인용 네트워크에서는 한국콘텐츠학회논문지, 한국사회학, 한국심리학회지: 문화 및 사회문제 등 인용이 많이 되고 있는 핵심 학술지들을 확인하였으며, 학문분야 인용 네트워크에서는 교육학, 경영학, 사회복지학이 다른 학문에 가장 많은 영향을 미치는 학문임을 확인하였다. 본 연구에서는 기존의 국내 계량서지분석연구에서 시도하지 않았던 구글 스칼라 매트릭스 데이터를 처음 활용하였으며, 키워드, 학술지, 학문분야로 범위를 확장시켜가며 단계적 네트워크 분석을 실시하였다는 점에서 학술적 의의를 가지며, 연구결과는 국내 대학 간 공동연구의 전략 수립 및 다학제적 융합 연구 기획에 활용될 수 있다는 점에서 실질적인 함의를 시사한다.

Abstract

This study aims to understand the research landscape of South Korea using the data of 2020 Google Scholar Metrics. To achieve the goal, we constructed and analyzed four types of networks including the university collaboration network, the keyword co-occurrence network, the journal citation network, and the discipline citation network. Through the analysis of the university collaboration network, we found major universities such as Seoul National University, Keimyung University, and Sungkyunkwan University that have led collaborative research. Job related keywords such as job change intention and job satisfaction have been frequently studied with other keywords. Through the analysis of the journal citation network, we found multiple journals such as The Journal of the Korea Contents Association, Korean Journal of Sociology, and Korean Journal of Culture and Social Issues that have been widely cited by the other journals and influenced them. Finally, Education, Business administration, and Social welfare were identified as the top influential disciplines that have influenced other disciplines through the knowledge diffusion. The study is the first of its kind to use the data of Google Scholar Metrics and conduct a stepwise network analysis (e.g., keyword, journal, and discipline) to broadly understand the research landscape of South Korea. Our results can be used by government agencies and universities to develop effective strategies of promoting university collaboration and interdisciplinary research.

5
노영희(건국대학교) ; 오의경(상명대학교) ; 정대근(전남대학교 문헌정보학과) 2018, Vol.35, No.2, pp.7-36 https://doi.org/10.3743/KOSIM.2018.35.2.007
초록보기
초록

본 연구는 기초학문자료센터가 인문자산 원스톱(One-Stop) 포털 서비스 구축에 있어 효과적인 데이터연계 방향성 제안을 목적으로 하였다. 이를 위해 인문자산을 보유한 국내 기관에 대한 현황을 수집하고 분석하였으며, 대상 기관이 보유한 데이터 분석을 통해 연계 방향성을 제시하였다. 본 연구에서는 첫째, 인문자산의 주제에 대하여 기존 분류체계 검토를 기반으로 인문자산의 분류체계를 제안하였다. 둘째, 조사 대상기관이 보유하고 있는 데이터의 주제와 유형에 대한 구체적인 분석을 통해 인문자산으로 편입될 수 있는 잠재적 데이터의 범주를 설정하였다. 셋째, 인문자산 원스톱 포털 서비스를 제공하고 있는 유사사례 기관의 플랫폼을 분석하였으며, 유사성을 중심으로 원스톱 시스템 구축 시, 적용 가능한 메타필드를 제시하였다.

Abstract

The purpose of this study is to propose an effective direction of data linkage for building the humanities assets one-stop portal service. For this purpose, We collected and analyzed the actual status of the domestic institution with humanities assets, and presented the linkage direction through analysis of the data held by the target organization. The results of this study are as follows: First, we proposed a classification system of humanities assets based on the reviewing the existing classification system on the subject of humanities assets. Second, we set up the categories of potential data that can be incorporated into humanities assets through a detailed analysis of the subject and type of data held by the subject institutions. Third, we analyzed the platforms of similar case organizations providing one-stop portal services for humanities assets and proposed the applicable meta fields when constructing one-stop system based on similarity.

초록보기
초록

이 연구는 KCI 기타인문학, 기타사회과학, 사회과학일반 분야(이하 ‘일반 및 기타 분야’로 표기)에 속한 학술지의 다학문성과 학제성을 분석한 후, 이를 바탕으로 일반 및 기타 분야의 학술지 분류에 대한 개선방안을 제안하는 것이 목적이다. 개별 학술지의 다학문성과 학제성은 인용관계에 나타난 학술지 단위 엔트로피와 논문 단위 엔트로피로 각각 측정하였다. 학술지 간 인용관계 분석 결과 KCI 일반 및 기타 분야에는 다학문성과 학제성 측면에서 다양한 학술지가 혼재되어 있는 것으로 나타났다. 일반 및 기타 분야 학술지의 분류를 바로잡기 위해서는 우선 학술연구분야 분류표에 인문학일반 분야를 새로 설정할 필요가 있음을 밝혔다. 나아가서 각 학술지의 다학문성 수준 및 학제성 수준을 고려하여 일반 및 기타 분야 학술지를 재분류하는 방안을 제안하였다.

Abstract

This study analyzed humanities and social science (HSS) journals of KCI to examine the multidisciplinarity and interdisciplinarity in the general and miscellaneous fields (hereinafter referred to as ‘GM fields’), The multidisciplinarity and interdisciplinarity identified in this study will be a foundation to improve classification of KCI journals in GM fields. Each journal’s multidisciplinarity and interdisciplinarity were measured by journal-level entropy and document-level entropy, respectively, in the citation relationships. According to the analysis, GM field journals have wide ranges of multidisciplinarity and interdisciplinarity. To improve classification quality of journals in GM fields, the general humanities should be considered as a new classification class for the multidisciplinary and interdisciplinary journals in the humanities. Furthermore, this study proposes a strategy to reclassify GM field journals of HSS according to their multidisciplinarity and interdisciplinarity.

초록보기
초록

이 연구에서는 프로파일링 분석과 동시출현단어 분석을 이용해 인접 학문과의 연관성을 바탕으로 한국어교육학의 정체성을 분석하고자 하였다. 먼저, 한국어교육학, 국어교육학, 국어학 학술지의 논문에서 추출한 주제어를 기반으로 저널 프로파일링 분석을 수행하였고 그 결과 한국어교육학 분야의 학술지들이 하나의 독립된 군집을 형성하는 것으로 나타났다. 그리고 학문 분야 프로파일링 분석과 동시출현단어 분석을 이용해 학문 분야 간 관계를 분석한 결과 한국어교육학이 국어학보다 국어교육학과 더 큰 유사성을 가지는 것으로 나타났다. 마지막으로, 동시출현단어 분석을 통해 세 학문 분야의 지적 구조를 비교․분석하였다. 이를 통해 한국어교육학에서만 출현한 주제들을 확인함으로써 인접학문들과의 관계 속에서 한국어교육학이 드러내는 정체성을 파악할 수 있었다.

Abstract

This study aims at establishing the identity of teaching Korean as a Foreign Language (KFL) domain by using journal profiling and co-word analysis in comparison with the relevant and adjacent domains. Firstly, by extracting and comparing topic terms, we calculate the similarity of academic journals of the three domains, KFL, teaching Korean as a Native Language (KNL), and Korean Linguistics (KL). The result shows that the journals of KFL form a distinct cluster from the others. The profiling analysis and co-word analysis are then conducted to visualize the relationship among all the three domains in order to uncover the characteristics of KFL. The findings show that KFL is more similar to KNL than to KL. Finally, the comparison of knowledge structures of these three domains based on the co-word analysis demonstrates the uniqueness of KFL as an independent domain in relation with the other relevant domains.

8
이재윤(명지대학교) ; 김수정(전북대학교) 2016, Vol.33, No.4, pp.103-124 https://doi.org/10.3743/KOSIM.2016.33.4.103
초록보기
초록

본 연구는 계량정보학적 분석을 통해 국내 재난 관련 연구의 동향을 파악하는 것을 목적으로 한다. 이를 위해 KCI 데이터베이스를 검색하여 2002년부터 2016년 사이에 출간된 재난 관련 학술지 논문 772편을 분석하였다. 논문들이 발표된 학문분야의 프로파일링 분석과 저널 프로파일링 분석 및 키워드 동시출현분석을 실시하였다. 분석 결과, 국내 재난 관련 연구의 수는 지속적으로 증가하고 있으며 특히 2014년 세월호 사건 이후에 재난 연구의 수가 급증하였다. 재난 연구의 주요 학문영역은 재난관리 정책을 제시하는 정책학/행정학 영역, 관련 기술을 개발하는 ‘공학’ 영역, 지리정보시스템과 통신기술을 연구하는 ‘GIS/통신’ 영역, 재난을 정신건강학 혹은 인문사회학적 측면에서 연구하는 ‘의학/인문사회과학’ 영역으로 확인되었다. 시기별로 살펴보면, 2014년 이후에는 행정학과 정책학 분야의 비중이 감소한 반면에 법학, 의학, 신문방송학 등의 다양한 학문 분야에서 재난 관련 연구가 활발해졌다.

Abstract

This study aims to investigate the research trends of disaster in Korea through a bibliometric analysis. To do that, it analyzed 772 scholarly articles published from 2002 to 2016, retrieved from KCI (Korean Citation Index) database. For analysis, discipline profiling analysis, journal profiling analysis, and co-word analysis methods were used. The study found that the number of scholarly articles on disaster has increased, especially after Sewol ferry disaster occurred in 2004. The major discipline areas were identified as ‘policy sciences/public administration’ area, ‘engineering’ area, ‘GIS/telecommunication’ area, and ‘medical/humanities/social sciences’ area. In terms of time series, the proportion of scholarly articles published in ‘policy sciences/public administration’ area has decreased since 2014 and at the same time, discipline areas have been diversified including law, medical, and journalism.

초록보기
초록

학문과 기술의 발달이 전개되면서 학문 간의 융합이 이루어지고 학제적 성향을 띠는 학문이 더욱 등장하게 되었다. 현재까지 계량정보학적 방법으로 학문 분야의 지적구조를 파악한 연구는 있었지만 학제적인 학문의 특성을 규명하여 지적구조를 분석한 시도는 적었다. 따라서 본 연구에서는 학제성을 띠는 의료정보학(Medical Informatics) 분야의 저널 중 IEEE ENG MED BIOL 저널을 선정하여 저자동시인용 분석과 동시출현단어 분석을 통해 본 저널의 지적구조를 파악하였다. 또한 상위 3개 대표 저널의 저자 및 MeSH Term을 추출하여 종합적으로 비교분석하였다. 이를 통해 의료정보학 분야의 융합된 학문들의 관계를 구조적으로 파악하고 의료정보학의 학문적 성향을 분석했다.

Abstract

Due to the development of science and technology, the convergence of various disciplines has been fostered. Accordingly, interdisciplinary studies have increasingly been expanded by integrating knowledge and methodology from different disciplines. The primary focus of biblimetric methods is on investigating the intellectual structure a field, and analysis of the characterization of interdisciplinary studies is overlooked. In this study, we aim to identify the intellectual structure of the field of medical informatics through author co-citation analysis and co-word analysis by the representative journal “IEEE ENG MED BIOL.” In addition, we examine authors and MeSH Terms of top three representative journals for further analysis of the field. We examine the intellectual structure of the medical informatics field by author and word clusters to identify the network structure of medical informatics disciplines.

초록보기
초록

이 연구는 저자동시인용분석과 저자서지결합분석을 종합한 학문의 지적 구조 분석 방법론의 유용성을 밝혀 이를 새롭게 제안하고자 하였다. 또한 국내 사회복지학 분야의 전통적인 지적 구조뿐만 아니라 최신의 연구동향 및 최근 활발한 연구 활동을 하는 핵심 연구자를 파악하는 데에 그 목적이 있다. 연구 결과 특정 학문 분야의 지적 구조를 파악하는데 있어 학문의 전통적 하위 주제 영역의 파악이나 실제 연구자들의 연구 경향을 파악하기 위하여 저자동시인용분석뿐만 아니라 저자서지결합분석을 병행하는 것이 보다 효율적인 것으로 나타났다.

Abstract

This study intended to make new suggestions by clarifying usefulness of analysis methodology for the intellectual structure of disciplines, which combines author co-citation analysis and author bibliographic coupling analysis. It also aimed to identify the recent research trend and key researchers recently doing research activities actively as well as the intellectual structure in the field of social welfare. It was found to be more efficient to conduct both author co-citation analysis and author bibliographic coupling analysis in order to identify traditional sub-areas of disciplinary subject or the research trend of actual researchers in examining the intellectual structure of a specific discipline.

정보관리학회지